import pandas as pd
import numpy as np
ds = pd.Series([1, 2, 3, 4, 5])
print(ds)
0 1 1 2 2 3 3 4 4 5 dtype: int64
import pandas as pd
import numpy as np
ds = pd.Series([1, 2, 3, 4, 5])
print(ds.dtype)
print(type(ds))
series_to_list = list(ds) # We can use ds.tolist() function instead.
print(series_to_list)
print(type(series_to_list))
int64 <class 'pandas.core.series.Series'> [1, 2, 3, 4, 5] <class 'list'>
import pandas as pd
import numpy as np
ds1 = pd.Series([2, 4, 6, 8, 10])
ds2 = pd.Series([1, 3, 5, 7, 9])
sum = ds1 + ds2
print("Summation of two Series:")
print(sum)
print()
print("Difference of two Series:")
print(ds1 - ds2)
print()
print("Multiple of two Series:")
print(ds1 * ds2)
print()
print("Divide of two Series:")
print(ds1 / ds2)
Summation of two Series: 0 3 1 7 2 11 3 15 4 19 dtype: int64 Difference of two Series: 0 1 1 1 2 1 3 1 4 1 dtype: int64 Multiple of two Series: 0 2 1 12 2 30 3 56 4 90 dtype: int64 Divide of two Series: 0 2.000000 1 1.333333 2 1.200000 3 1.142857 4 1.111111 dtype: float64
import numpy as np
import pandas as pd
ds1 = pd.Series([2, 4, 6, 8, 10])
ds2 = pd.Series([1, 3, 5, 7, 9])
print("Equal Check:")
print(ds1 == ds2)
print()
print("Greater Check:")
print(ds1 > ds2)
Equal Check: 0 False 1 False 2 False 3 False 4 False dtype: bool Greater Check: 0 True 1 True 2 True 3 True 4 True dtype: bool
Original dictionary: {'a': 100, 'b': 200, 'c': 300, 'd': 400, 'e': 800}
import numpy as np
import pandas as pd
sample_dict = {'a': 100, 'b': 200, 'c': 300, 'd': 400, 'e': 800}
dict_to_series = pd.Series(sample_dict)
print(dict_to_series)
a 100 b 200 c 300 d 400 e 800 dtype: int64
import pandas as pd
import numpy as np
l = [10, 20, 30, 40, 50]
arr = np.array(l)
print(arr)
print(type(arr))
print('\nFrom Numpy array to Pandas Series Conversion:')
print(pd.Series(arr))
[10 20 30 40 50] <class 'numpy.ndarray'> From Numpy array to Pandas Series Conversion: 0 10 1 20 2 30 3 40 4 50 dtype: int32
import pandas as pd
import numpy as np
origina_ser = pd.Series([100, 200, 'python', 300.12, 400])
numeric_ser = pd.to_numeric(origina_ser, errors = 'coerce')
print(numeric_ser)
0 100.00 1 200.00 2 NaN 3 300.12 4 400.00 dtype: float64
import pandas as pd
import numpy as np
dataframe = pd.DataFrame({'col1': [1, 2, 3, 4, 7, 11], 'col2': [4, 5, 6, 9, 5, 0], 'col3': [7, 5, 8, 12, 1, 11]})
print('Original Dataframe:')
print(dataframe)
print('\n')
first_column = dataframe['col1']
print('First Column as Series:')
print(first_column)
print(type(first_column))
Original Dataframe: col1 col2 col3 0 1 4 7 1 2 5 5 2 3 6 8 3 4 9 12 4 7 5 1 5 11 0 11 First Column as Series: 0 1 1 2 2 3 3 4 4 7 5 11 Name: col1, dtype: int64 <class 'pandas.core.series.Series'>
import numpy as np
import pandas as pd
ser = pd.Series([100, 200, 'python', 300.12, 400])
ser_to_array = ser.to_list()
print('Pandas Series to Array:', ser_to_array)
Pandas Series to Array: [100, 200, 'python', 300.12, 400]
import numpy as np
import pandas as pd
ser = pd.Series([['Red', 'Green', 'White'], ['Red', 'Black'], ['Yellow']])
single_series = ser.apply(pd.Series).stack().reset_index(drop = True) #Learned New Technique
print('Converted series of lists into one series:\n')
print(single_series)
Converted series of lists into one series: 0 Red 1 Green 2 White 3 Red 4 Black 5 Yellow dtype: object
import numpy as np
import pandas as pd
ser = pd.Series(['100', '200', 'python', '300.12', '400'])
print('Sorted Series by values:')
ser.sort_values()
Sorted Series by values:
0 100 1 200 3 300.12 4 400 2 python dtype: object
import numpy as np
import pandas as pd
ser = pd.Series(['100', '200', 'python', '300.12', '400'])
series_after_adding = ser.append(pd.Series(['500', 'php']))
print('New Series after adding:\n')
print(series_after_adding)
New Series after adding: 0 100 1 200 2 python 3 300.12 4 400 0 500 1 php dtype: object
import numpy as np
import pandas as pd
ser = pd.Series([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10])
condition = ser.apply(lambda x: x <= 5)
print('Subset of series based on condition:')
ser[condition]
Subset of series based on condition:
0 0 1 1 2 2 3 3 4 4 5 5 dtype: int64
import numpy as np
import pandas as pd
ser = pd.Series([1, 2, 3, 4, 5], index = ['A', 'B', 'C', 'D', 'E'])
new_index = ['B', 'A', 'C', 'D', 'E']
ser.reindex(new_index)
B 2 A 1 C 3 D 4 E 5 dtype: int64
import numpy as np
import pandas as pd
ser = pd.Series([1, 2, 3, 4, 5, 6, 7, 8, 9, 5, 3])
print('Mean of the series\t\t:', ser.mean())
print('Standard deviation of the series:', ser.std())
Mean of the series : 4.818181818181818 Standard deviation of the series: 2.522624895547565