%matplotlib inline
import os
import datetime as dt
import numpy as np
from scipy import signal
from matplotlib import pyplot as plt, ticker, dates as mdates
import pysolid
from mintpy.utils import utils as ut, isce_utils
plt.rcParams.update({'font.size': 12})
work_dir = os.path.expanduser('~/Papers/2022_Geolocation/figs_src/SET')
os.chdir(work_dir)
print('Go to directory', work_dir)
Go to directory /Users/yunjunz/Papers/2021_Geolocation/figs_src/SET
## SET time-series
# inputs
lat, lon = 34.0, -118.0 # Los Angles, CA
step_sec = 60 * 30
dt0 = dt.datetime(2019,12,1,0,0,0)
dt1 = dt.datetime(2021,2,1,0,0,0)
# run
(dt_out,
tide_e,
tide_n,
tide_u) = pysolid.calc_solid_earth_tides_point(lat, lon, dt0, dt1,
step_sec=step_sec,
display=False,
verbose=False)
# tide: ENU2LOS
inc_angle = 42 * np.pi / 180.
az_angle = 100 * np.pi / 180.
tide_los = ut.enu2los(tide_e, tide_n, tide_u, inc_angle=inc_angle, az_angle=az_angle)
# SET time-series at SAR acquisitions
dt_sen12 = np.array([dt.datetime(2019, 9, 3, 13, 30, 0) + dt.timedelta(days=12) * i for i in range(-200,200)])
dt_sen06 = np.array([dt.datetime(2019, 9, 3, 13, 30, 0) + dt.timedelta(days=6) * i for i in range(-400,400)])
tide_sen12 = np.array([tide_los[dt_out==d] for d in dt_sen12 if np.sum(dt_out==d) > 0], dtype=np.float32)
tide_sen06 = np.array([tide_los[dt_out==d] for d in dt_sen06 if np.sum(dt_out==d) > 0], dtype=np.float32)
# remove zero values
dt_sen12 = dt_sen12[np.multiply(dt_sen12>=dt0, dt_sen12<=dt1)]
dt_sen06 = dt_sen06[np.multiply(dt_sen06>=dt0, dt_sen06<=dt1)]
print('Done.')
PYSOLID: calculate solid Earth tides in east/north/up direction PYSOLID: lot/lon: 34.0/-118.0 degree PYSOLID: start UTC: 2019-12-01T00:00:00 PYSOLID: end UTC: 2021-02-01T00:00:00 PYSOLID: time step: 1800 seconds Done.
# plot
fig, ax = plt.subplots(nrows=1, ncols=1, figsize=[7, 2.5])
ax.plot(dt_out, tide_u*100, lw=0.5, c='k')
ax.plot(dt_sen12, tide_sen12*100, 'o-', c='C0', label='Sampled every 12 days (by SAR)')
#ax.plot(dt_sen06, tide_sen06*100, 'o-', c='C1', mfc='none', label='Sampled every 6 days')
# axis format
ax.tick_params(which='both', direction='out', bottom=True, top=False, left=True, right=True)
ax.xaxis.set_major_formatter(mdates.DateFormatter('%Y-%m'))
ax.xaxis.set_major_locator(mdates.MonthLocator())
ax.xaxis.set_minor_locator(mdates.DayLocator())
ax.yaxis.set_minor_locator(ticker.AutoMinorLocator())
ax.set_ylabel('LOS displacement [cm]')
ax.set_xlim(dt.datetime(2020,9,10), dt.datetime(2020,12,15))
#ax.set_ylim(-22, 40)
ax.legend(loc='upper right', ncol=2)
fig.tight_layout()
# output
out_fig = os.path.abspath('SET_TS.pdf')
print('save figure to file:', out_fig)
fig.savefig(out_fig, bbox_inches='tight', transparent=True, dpi=600)
plt.show()
save figure to file: /Users/yunjunz/Papers/2021_Geolocation/figs_src/SET/SET_TS.pdf
## calc PSD
fs = 1. / step_sec
freq, psd = signal.periodogram(tide_los, fs=fs, scaling='density')
# get rid of zero in the first element
psd = psd[1:] / 1e4
freq = freq[1:]
period = 1./3600./freq # period (hour)
## plot
fig, axs = plt.subplots(nrows=1, ncols=2, figsize=[7.2, 2.8], sharey=True)
for ax in axs:
ax.plot(period, psd, 'ko', ms=8, mfc='none', mew=1.5)
# axis format
for ax in axs:
ax.tick_params(which='both', direction='out', bottom=True, top=True, left=True, right=True)
ax.xaxis.set_minor_locator(ticker.AutoMinorLocator())
ax.set_xlabel('Period [hour]')
axs[0].set_xlim(11.3, 13.2)
axs[1].set_xlim(22.0, 28.0)
ax = axs[0]
ax.set_ylabel('Power spectral density\n'+r'[$10^4$ '+r'm$^2/$ Hz]')
ax.set_ylim(0, ymax=axs[0].get_ylim()[1] * 1.1)
ax.yaxis.set_major_locator(ticker.FixedLocator([0,10,20]))
ax.yaxis.set_minor_locator(ticker.AutoMinorLocator())
fig.tight_layout()
# Tidal constituents
for ax in axs: pysolid.add_tidal_constituents(ax, period, psd, min_psd=0.4)
# output
out_fig = 'SET_PSD.pdf'
print('save figure to file:', os.path.abspath(out_fig))
fig.savefig(out_fig, bbox_inches='tight', transparent=True, dpi=600)
plt.show()
save figure to file: /Users/yunjunz/Papers/2021_Geolocation/figs_src/SET_PSD.pdf
t_m2 = 12.4206012 * 3600 # seconds, period of M2 tide
t_sen = 6 * 24 * 3600 # seconds, sampling interval of Sentinel-1 and NISAR
f_m2 = 1000. / t_m2 # mHz
f_sen = 1000. / t_sen # mHz
print(f'Signal frequency [mHz]: {f_m2}')
print(f'Sampling rate [mHz]: {f_sen}')
N = np.rint(f_m2 / f_sen)
f_alias = np.abs(N * f_sen - f_m2)
t_alias = (1000. / f_alias) / (24 * 3600)
print(f'Alias frequency [mHz]: {f_alias} -> {t_alias:.2f} days')
Signal frequency [mHz]: 0.02236427796891005 Sampling rate [mHz]: 0.0019290123456790122 Alias frequency [mHz]: 0.0007838701792380956 -> 14.77 days
tide_los_max_rate = np.max(np.abs(np.diff(tide_los) / step_sec)) * 1000 * 60
print('max LOS SET rate: {:.1f} mm/min'.format(tide_los_max_rate))
xml_file = os.path.expanduser('~/data/geolocation/ChileSenAT149/reference/IW2.xml')
meta, burst = isce_utils.extract_isce_metadata(xml_file)
Vs = float(meta['satelliteSpeed'])
Re = float(meta['earthRadius'])
Hs = float(meta['altitude'])
Vg = Vs * Re / (Re + Hs)
print('Satellite speed on orbit / ground: {:.1f} / {:.1f} m/s'.format(Vs, Vg))
t = 100e3 / Vg
ramp = tide_los_max_rate * (t / 60)
print('Time to image 100 km: {:.1f}'.format(t))
print('SET ramp in the along-track direction: {:.1f} mm / 100km'.format(ramp))
max LOS SET rate: 1.9 mm/min extract metadata from ISCE/topsStack xml file: /Users/yunjunz/data/geolocation/ChileSenAT149/reference/IW2.xml This is the Open Source version of ISCE. Some of the workflows depend on a separate licensed package. To obtain the licensed package, please make a request for ISCE through the website: https://download.jpl.nasa.gov/ops/request/index.cfm. Alternatively, if you are a member, or can become a member of WinSAR you may be able to obtain access to a version of the licensed sofware at https://winsar.unavco.org/software/isce Satellite speed on orbit / ground: 7590.2 / 6831.6 m/s Time to image 100 km: 14.6 SET ramp in the along-track direction: 0.5 mm / 100km