Notebook Status: Validated
Validation Notes: This tutorial notebook has been confirmed to be self-consistent with its corresponding NRPy+ module, as documented below. In addition, each of these Butcher tables has been verified to yield an RK method to the expected local truncation error in a challenging battery of ODE tests in the RK Butcher Table Validation tutorial notebook.
The family of explicit Runge Kutta-like methods are commonly used when numerically solving ordinary differential equation (ODE) initial value problems of the form
y′(t)=f(y,t), y(t0)=y0.These methods can be extended to solve time-dependent partial differential equations (PDEs) via the Method of Lines. In the Method of Lines, the above ODE can be generalized to N coupled ODEs, all written as first-order-in-time PDEs of the form
∂tu(t,x,y,u1,u2,u3,...)=f(t,x,y,...,u1,u1,x,...),where u and f are vectors. The spatial partial derivatives of components of u, e.g., u1,x, may be computed using approximate numerical differentiation, like finite differences.
As any explicit Runge-Kutta method has its own unique local truncation error, can in principle be used to solve time-dependent PDEs using the Method of Lines, and may be stable under different Courant-Friedrichs-Lewy (CFL) conditions, it is useful to have multiple methods at one's disposal. This module provides a number of such methods.
More details about the Method of Lines is discussed further in the Tutorial-RK_Butcher_Table_Generating_C_Code module where we generate the C code to implement the Method of Lines, and additional description can be found in the Numerically Solving the Scalar Wave Equation: A Complete C Code NRPy+ tutorial notebook.
This notebook is organized as follows
MoLtimestepping.RK_Butcher_Table_Dictionary
NRPy+ module# Step 1: Initialize needed Python modules
import sympy as sp # SymPy: The Python computer algebra package upon which NRPy+ depends
In general, a predictor-corrector method performs an estimate timestep from n to n+1, using e.g., a Runge Kutta method, to get a prediction of the solution at timestep n+1. This is the "predictor" step. Then it uses this prediction to perform another, "corrector" step, designed to increase the accuracy of the solution.
Let us focus on the ordinary differential equation (ODE)
y′(t)=f(y,t),which acts as an analogue for a generic PDE ∂tu(t,x,y,...)=f(t,x,y,...,u,ux,...).
The general family of Runge Kutta "explicit" timestepping methods are implemented using the following scheme:
yn+1=yn+s∑i=1bikiwhere
k1=Δtf(yn,tn)k2=Δtf(yn+[a21k1],tn+c2Δt)k3=Δtf(yn+[a31k1+a32k2],tn+c3Δt) ⋮ks=Δtf(yn+[as1k1+as2k2+⋯+as,s−1ks−1],tn+csΔt).Note s is the number of right-hand side evaluations necessary for any given method, i.e., for RK2 s=2 and for RK4 s=4, and for RK6 s=7. These schemes are often written in the form of a so-called "Butcher tableau" or "Butcher table."
0c2a21c3a31a32⋮⋮⋱csas1as2⋯as,s−1b1b2⋯bs−1bsAs an example, the "classic" fourth-order Runge Kutta (RK4) method obtains the solution y(t) to the single-variable ODE y′(t)=f(y(t),t) at time tn+1 from tn via:
k1=Δtf(yn,tn),k2=Δtf(yn+12k1,tn+Δt2),k3=Δtf(yn+12k2,tn+Δt2),k4=Δtf(yn+k3,tn+Δt),yn+1=yn+16(k1+2k2+2k3+k4)+O((Δt)5).Its corresponding Butcher table is constructed as follows:
01/21/21/201/210011/61/31/31/6This is one example of many explicit Runge Kutta methods. Throughout the following sections we will highlight different Runge Kutta schemes and their Butcher tables from the first-order Euler's method up to and including an eighth-order method.
We can store all of the Butcher tables in Python's Dictionary format using the curly brackets {} and 'key':value pairs. The 'key' will be the name of the Runge Kutta method and the value will be the Butcher table itself stored as a list of lists. The convergence order for each Runge Kutta method is also stored. We will construct the dictionary Butcher_dict
one Butcher table at a time in the following sections.
# Step 2a: Generating a Dictionary of Butcher Tables for Explicit Runge Kutta Techniques
# Initialize the dictionary Butcher_dict
Butcher_dict = {}
Forward Euler's method is a first order Runge Kutta method. Euler's method obtains the solution y(t) at time tn+1 from tn via: yn+1=yn+Δtf(yn,tn)
# Step 2.a.i: Euler's Method
Butcher_dict['Euler'] = (
[[sp.sympify(0)],
["", sp.sympify(1)]]
, 1)
Heun's method is a second-order RK method that obtains the solution y(t) at time tn+1 from tn via: k1=Δtf(yn,tn),k2=Δtf(yn+k1,tn+Δt),yn+1=yn+12(k1+k2)+O((Δt)3)
# Step 2.a.ii: RK2 Heun's Method
Butcher_dict['RK2 Heun'] = (
[[sp.sympify(0)],
[sp.sympify(1), sp.sympify(1)],
["", sp.Rational(1,2), sp.Rational(1,2)]]
, 2)
Midpoint method is a second-order RK method that obtains the solution y(t) at time tn+1 from tn via: k1=Δtf(yn,tn),k2=Δtf(yn+23k1,tn+23Δt),yn+1=yn+12k2+O((Δt)3)
# Step 2.a.iii: RK2 Midpoint (MP) Method
Butcher_dict['RK2 MP'] = (
[[sp.sympify(0)],
[sp.Rational(1,2), sp.Rational(1,2)],
["", sp.sympify(0), sp.sympify(1)]]
, 2)
Ralston's method (see Ralston (1962), is a second-order RK method that obtains the solution y(t) at time tn+1 from tn via: k1=Δtf(yn,tn),k2=Δtf(yn+12k1,tn+12Δt),yn+1=yn+14k1+34k2+O((Δt)3)
# Step 2.a.iv: RK2 Ralston's Method
Butcher_dict['RK2 Ralston'] = (
[[sp.sympify(0)],
[sp.Rational(2,3), sp.Rational(2,3)],
["", sp.Rational(1,4), sp.Rational(3,4)]]
, 2)
Kutta's third-order method obtains the solution y(t) at time tn+1 from tn via: k1=Δtf(yn,tn),k2=Δtf(yn+12k1,tn+12Δt),k3=Δtf(yn−k1+2k2,tn+Δt)yn+1=yn+16k1+23k2+16k3+O((Δt)4)
# Step 2.a.v: Kutta's Third-order Method
Butcher_dict['RK3'] = (
[[sp.sympify(0)],
[sp.Rational(1,2), sp.Rational(1,2)],
[sp.sympify(1), sp.sympify(-1), sp.sympify(2)],
["", sp.Rational(1,6), sp.Rational(2,3), sp.Rational(1,6)]]
, 3)
Heun's third-order method obtains the solution y(t) at time tn+1 from tn via:
k1=Δtf(yn,tn),k2=Δtf(yn+13k1,tn+13Δt),k3=Δtf(yn+23k2,tn+23Δt)yn+1=yn+14k1+34k3+O((Δt)4)with corresponding Butcher table
01/31/32/302/31/403/4.# Step 2.a.vi: RK3 Heun's Method
Butcher_dict['RK3 Heun'] = (
[[sp.sympify(0)],
[sp.Rational(1,3), sp.Rational(1,3)],
[sp.Rational(2,3), sp.sympify(0), sp.Rational(2,3)],
["", sp.Rational(1,4), sp.sympify(0), sp.Rational(3,4)]]
, 3)
Ralston's third-order method (see Ralston (1962), obtains the solution y(t) at time tn+1 from tn via:
k1=Δtf(yn,tn),k2=Δtf(yn+12k1,tn+12Δt),k3=Δtf(yn+34k2,tn+34Δt)yn+1=yn+29k1+13k2+49k3+O((Δt)4)with corresponding Butcher table 01/21/23/403/42/91/34/9.
# Step 2.a.vii: RK3 Ralton's Method
Butcher_dict['RK3 Ralston'] = (
[[0],
[sp.Rational(1,2), sp.Rational(1,2)],
[sp.Rational(3,4), sp.sympify(0), sp.Rational(3,4)],
["", sp.Rational(2,9), sp.Rational(1,3), sp.Rational(4,9)]]
, 3)
The Strong Stability Preserving Runge-Kutta (SSPRK3) method obtains the solution y(t) at time tn+1 from tn via:
k1=Δtf(yn,tn),k2=Δtf(yn+k1,tn+Δt),k3=Δtf(yn+14k1+14k2,tn+12Δt)yn+1=yn+16k1+16k2+23k3+O((Δt)4)with corresponding Butcher table 0111/21/41/41/61/62/3.
# Step 2.a.viii: Strong Stability Preserving Runge-Kutta (SSPRK3) Method
Butcher_dict['SSPRK3'] = (
[[0],
[sp.sympify(1), sp.sympify(1)],
[sp.Rational(1,2), sp.Rational(1,4), sp.Rational(1,4)],
["", sp.Rational(1,6), sp.Rational(1,6), sp.Rational(2,3)]]
, 3)
The classic RK4 method obtains the solution y(t) at time tn+1 from tn via:
k1=Δtf(yn,tn),k2=Δtf(yn+12k1,tn+Δt2),k3=Δtf(yn+12k2,tn+Δt2),k4=Δtf(yn+k3,tn+Δt),yn+1=yn+16(k1+2k2+2k3+k4)+O((Δt)5)with corresponding Butcher table
01/21/21/201/210011/61/31/31/6.# Step 2.a.vix: Classic RK4 Method
Butcher_dict['RK4'] = (
[[sp.sympify(0)],
[sp.Rational(1,2), sp.Rational(1,2)],
[sp.Rational(1,2), sp.sympify(0), sp.Rational(1,2)],
[sp.sympify(1), sp.sympify(0), sp.sympify(0), sp.sympify(1)],
["", sp.Rational(1,6), sp.Rational(1,3), sp.Rational(1,3), sp.Rational(1,6)]]
, 4)
The fifth-order Dormand-Prince (DP) method from the RK5(4) family (see Dormand, J. R.; Prince, P. J. (1980)) Butcher table is:
01515310340940454445−561532989193726561−253602187644486561−212729190173168−3553346732524749176−51031865613538405001113125192−2187678411843538405001113125192−2187678411840.# Step 2.a.x: RK5 Dormand-Prince Method
Butcher_dict['DP5'] = (
[[0],
[sp.Rational(1,5), sp.Rational(1,5)],
[sp.Rational(3,10),sp.Rational(3,40), sp.Rational(9,40)],
[sp.Rational(4,5), sp.Rational(44,45), sp.Rational(-56,15), sp.Rational(32,9)],
[sp.Rational(8,9), sp.Rational(19372,6561), sp.Rational(-25360,2187), sp.Rational(64448,6561), sp.Rational(-212,729)],
[sp.sympify(1), sp.Rational(9017,3168), sp.Rational(-355,33), sp.Rational(46732,5247), sp.Rational(49,176), sp.Rational(-5103,18656)],
[sp.sympify(1), sp.Rational(35,384), sp.sympify(0), sp.Rational(500,1113), sp.Rational(125,192), sp.Rational(-2187,6784), sp.Rational(11,84)],
["", sp.Rational(35,384), sp.sympify(0), sp.Rational(500,1113), sp.Rational(125,192), sp.Rational(-2187,6784), sp.Rational(11,84), sp.sympify(0)]]
, 5)
The fifth-order Dormand-Prince (DP) method from the RK6(5) family (see Dormand, J. R.; Prince, P. J. (1981)) Butcher table is:
011011029−2812081376151372−270343105313723532435500−5455509497150049981787545−26492371257255280823375−2420637125338459155612376−3511−2411731603899983200772−5225183639254056821108000196837182517527391260039536727852704350.# Step 2.a.xi: RK5 Dormand-Prince Method Alternative
Butcher_dict['DP5alt'] = (
[[0],
[sp.Rational(1,10), sp.Rational(1,10)],
[sp.Rational(2,9), sp.Rational(-2, 81), sp.Rational(20, 81)],
[sp.Rational(3,7), sp.Rational(615, 1372), sp.Rational(-270, 343), sp.Rational(1053, 1372)],
[sp.Rational(3,5), sp.Rational(3243, 5500), sp.Rational(-54, 55), sp.Rational(50949, 71500), sp.Rational(4998, 17875)],
[sp.Rational(4, 5), sp.Rational(-26492, 37125), sp.Rational(72, 55), sp.Rational(2808, 23375), sp.Rational(-24206, 37125), sp.Rational(338, 459)],
[sp.sympify(1), sp.Rational(5561, 2376), sp.Rational(-35, 11), sp.Rational(-24117, 31603), sp.Rational(899983, 200772), sp.Rational(-5225, 1836), sp.Rational(3925, 4056)],
["", sp.Rational(821, 10800), sp.sympify(0), sp.Rational(19683, 71825), sp.Rational(175273, 912600), sp.Rational(395, 3672), sp.Rational(785, 2704), sp.Rational(3, 50)]]
, 5)
The fifth-order Cash-Karp Method (see J. R. Cash, A. H. Karp. (1980)) Butcher table is:
0151531034094035310−910651−115452−70273527781631552961755125751382444275110592253409637378025062112559405121771.# Step 2.a.xii: RK5 Cash-Karp Method
Butcher_dict['CK5'] = (
[[0],
[sp.Rational(1,5), sp.Rational(1,5)],
[sp.Rational(3,10),sp.Rational(3,40), sp.Rational(9,40)],
[sp.Rational(3,5), sp.Rational(3,10), sp.Rational(-9,10), sp.Rational(6,5)],
[sp.sympify(1), sp.Rational(-11,54), sp.Rational(5,2), sp.Rational(-70,27), sp.Rational(35,27)],
[sp.Rational(7,8), sp.Rational(1631,55296), sp.Rational(175,512), sp.Rational(575,13824), sp.Rational(44275,110592), sp.Rational(253,4096)],
["",sp.Rational(37,378), sp.sympify(0), sp.Rational(250,621), sp.Rational(125,594), sp.sympify(0), sp.Rational(512,1771)]]
, 5)
The sixth-order Dormand-Prince method (see Dormand, J. R.; Prince, P. J. (1981)) Butcher Table is:
011011029−2812081376151372−270343105313723532435500−5455509497150049981787545−26492371257255280823375−2420637125338459155612376−3511−2411731603899983200772−52251836392540561465467266112−29451232−561020114158144105135733212352−424325205632376225454272061864098415321776168071460161375734413755408−371120110.# Step 2.a.xiii: RK6 Dormand-Prince Method
Butcher_dict['DP6'] = (
[[0],
[sp.Rational(1,10), sp.Rational(1,10)],
[sp.Rational(2,9), sp.Rational(-2, 81), sp.Rational(20, 81)],
[sp.Rational(3,7), sp.Rational(615, 1372), sp.Rational(-270, 343), sp.Rational(1053, 1372)],
[sp.Rational(3,5), sp.Rational(3243, 5500), sp.Rational(-54, 55), sp.Rational(50949, 71500), sp.Rational(4998, 17875)],
[sp.Rational(4, 5), sp.Rational(-26492, 37125), sp.Rational(72, 55), sp.Rational(2808, 23375), sp.Rational(-24206, 37125), sp.Rational(338, 459)],
[sp.sympify(1), sp.Rational(5561, 2376), sp.Rational(-35, 11), sp.Rational(-24117, 31603), sp.Rational(899983, 200772), sp.Rational(-5225, 1836), sp.Rational(3925, 4056)],
[sp.sympify(1), sp.Rational(465467, 266112), sp.Rational(-2945, 1232), sp.Rational(-5610201, 14158144), sp.Rational(10513573, 3212352), sp.Rational(-424325, 205632), sp.Rational(376225, 454272), sp.sympify(0)],
["", sp.Rational(61, 864), sp.sympify(0), sp.Rational(98415, 321776), sp.Rational(16807, 146016), sp.Rational(1375, 7344), sp.Rational(1375, 5408), sp.Rational(-37, 1120), sp.Rational(1,10)]]
, 6)
Luther's sixth-order method (see H. A. Luther (1968)) Butcher table is: 01112381823827227827(7−q)14(−21+9q)392(−56+8q)392(336−48q)392(−63+3q)392(7+q)14(−1155−255q)1960(−280−40q)1960320q1960(63+363q)1960(2352+392q)19601(330+105q)18023(−200+280q)180(126−189q)180(−686−126q)180(490−70q)1801200164504918049180120
where q=√21.
# Step 2.a.xiv: RK6 Luther's Method
q = sp.sqrt(21)
Butcher_dict['L6'] = (
[[0],
[sp.sympify(1), sp.sympify(1)],
[sp.Rational(1,2), sp.Rational(3,8), sp.Rational(1,8)],
[sp.Rational(2,3), sp.Rational(8,27), sp.Rational(2,27), sp.Rational(8,27)],
[(7 - q)/14, (-21 + 9*q)/392, (-56 + 8*q)/392, (336 -48*q)/392, (-63 + 3*q)/392],
[(7 + q)/14, (-1155 - 255*q)/1960, (-280 - 40*q)/1960, (-320*q)/1960, (63 + 363*q)/1960, (2352 + 392*q)/1960],
[sp.sympify(1), ( 330 + 105*q)/180, sp.Rational(2,3), (-200 + 280*q)/180, (126 - 189*q)/180, (-686 - 126*q)/180, (490 - 70*q)/180],
["", sp.Rational(1, 20), sp.sympify(0), sp.Rational(16, 45), sp.sympify(0), sp.Rational(49, 180), sp.Rational(49, 180), sp.Rational(1, 20)]]
, 6)
The eighth-order Dormand-Prince Method (see Dormand, J. R.; Prince, P. J. (1981)) Butcher table is:
01181181121481161813203325165160−75647564383800031632059400294438416145639060077736538692538347−28693883112500000023124283180000000093200160161419466929110061564180158732637227897136334457775458157362771057229−1801936671043307555549002324897191698213963270857359108300−433636366683701615−421739975261629230110030283172342305979020416483981308780063531037830712871320246121993134084778700−3769504279515268766246−3091217441061227803−12992083490766935600594349321089478693930062171396673457123872331100102978912011468111299019798−102846818984618001400847823578350851285213117294951432422823−103041299951701304382−487779250593047939560153367262481032824649−4544286818133984676963065993473597172653118589217771811604300−3185094517667107341−4777554141098053517−703635378230739211573156678710275455275232866602850066563−40936645358086882573962137247180595741865686358487910083140386385449106310900−5068492393434740067−41142199754304380565278362791429660411173962825925320556−13158990841618472703439366476291978049680−16052805968517852524863810314135310600140054513354800640000−592384931068277825181606767758867731561292985797845732−104189143013713435297604172391151165299118820643751138087−528747749222060717014.# Step 2.a.xv: RK8 Dormand-Prince Method
Butcher_dict['DP8']=(
[[0],
[sp.Rational(1, 18), sp.Rational(1, 18)],
[sp.Rational(1, 12), sp.Rational(1, 48), sp.Rational(1, 16)],
[sp.Rational(1, 8), sp.Rational(1, 32), sp.sympify(0), sp.Rational(3, 32)],
[sp.Rational(5, 16), sp.Rational(5, 16), sp.sympify(0), sp.Rational(-75, 64), sp.Rational(75, 64)],
[sp.Rational(3, 8), sp.Rational(3, 80), sp.sympify(0), sp.sympify(0), sp.Rational(3, 16), sp.Rational(3, 20)],
[sp.Rational(59, 400), sp.Rational(29443841, 614563906), sp.sympify(0), sp.sympify(0), sp.Rational(77736538, 692538347), sp.Rational(-28693883, 1125000000), sp.Rational(23124283, 1800000000)],
[sp.Rational(93, 200), sp.Rational(16016141, 946692911), sp.sympify(0), sp.sympify(0), sp.Rational(61564180, 158732637), sp.Rational(22789713, 633445777), sp.Rational(545815736, 2771057229), sp.Rational(-180193667, 1043307555)],
[sp.Rational(5490023248, 9719169821), sp.Rational(39632708, 573591083), sp.sympify(0), sp.sympify(0), sp.Rational(-433636366, 683701615), sp.Rational(-421739975, 2616292301), sp.Rational(100302831, 723423059), sp.Rational(790204164, 839813087), sp.Rational(800635310, 3783071287)],
[sp.Rational(13, 20), sp.Rational(246121993, 1340847787), sp.sympify(0), sp.sympify(0), sp.Rational(-37695042795, 15268766246), sp.Rational(-309121744, 1061227803), sp.Rational(-12992083, 490766935), sp.Rational(6005943493, 2108947869), sp.Rational(393006217, 1396673457), sp.Rational(123872331, 1001029789)],
[sp.Rational(1201146811, 1299019798), sp.Rational(-1028468189, 846180014), sp.sympify(0), sp.sympify(0), sp.Rational(8478235783, 508512852), sp.Rational(1311729495, 1432422823), sp.Rational(-10304129995, 1701304382), sp.Rational(-48777925059, 3047939560), sp.Rational(15336726248, 1032824649), sp.Rational(-45442868181, 3398467696), sp.Rational(3065993473, 597172653)],
[sp.sympify(1), sp.Rational(185892177, 718116043), sp.sympify(0), sp.sympify(0), sp.Rational(-3185094517, 667107341), sp.Rational(-477755414, 1098053517), sp.Rational(-703635378, 230739211), sp.Rational(5731566787, 1027545527), sp.Rational(5232866602, 850066563), sp.Rational(-4093664535, 808688257), sp.Rational(3962137247, 1805957418), sp.Rational(65686358, 487910083)],
[sp.sympify(1), sp.Rational(403863854, 491063109), sp.sympify(0), sp.sympify(0), sp.Rational(-5068492393, 434740067), sp.Rational(-411421997, 543043805), sp.Rational(652783627, 914296604), sp.Rational(11173962825, 925320556), sp.Rational(-13158990841, 6184727034), sp.Rational(3936647629, 1978049680), sp.Rational(-160528059, 685178525), sp.Rational(248638103, 1413531060), sp.sympify(0)],
["", sp.Rational(14005451, 335480064), sp.sympify(0), sp.sympify(0), sp.sympify(0), sp.sympify(0), sp.Rational(-59238493, 1068277825), sp.Rational(181606767, 758867731), sp.Rational(561292985, 797845732), sp.Rational(-1041891430, 1371343529), sp.Rational(760417239, 1151165299), sp.Rational(118820643, 751138087), sp.Rational(-528747749, 2220607170), sp.Rational(1, 4)]]
, 8)
MoLtimestepping.RK_Butcher_Table_Dictionary
NRPy+ module [Back to top]¶As a code validation check, we verify agreement in the dictionary of Butcher tables between
We analyze all key/value entries in the dictionary for consistency.
# Step 3: Code validation against MoLtimestepping.RK_Butcher_Table_Dictionary NRPy+ module
import sys # Standard Python module for multiplatform OS-level functions
from MoLtimestepping.RK_Butcher_Table_Dictionary import Butcher_dict as B_dict
valid = True
for key, value in Butcher_dict.items():
if Butcher_dict[key] != B_dict[key]:
valid = False
print(key)
if valid == True and len(Butcher_dict.items()) == len(B_dict.items()):
print("The dictionaries match!")
else:
print("ERROR: Dictionaries don't match!")
sys.exit(1)
The dictionaries match!
The following code cell converts this Jupyter notebook into a proper, clickable LATEX-formatted PDF file. After the cell is successfully run, the generated PDF may be found in the root NRPy+ tutorial directory, with filename Tutorial-RK_Butcher_Table_Dictionary.pdf. (Note that clicking on this link may not work; you may need to open the PDF file through another means.)
import cmdline_helper as cmd # NRPy+: Multi-platform Python command-line interface
cmd.output_Jupyter_notebook_to_LaTeXed_PDF("Tutorial-RK_Butcher_Table_Dictionary")
Created Tutorial-RK_Butcher_Table_Dictionary.tex, and compiled LaTeX file to PDF file Tutorial-RK_Butcher_Table_Dictionary.pdf