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a b s t r a c t 

We propose a novel multiclass classifier for single trial electroencephalogram (EEG) data in matrix form, 

namely multiclass support matrix machine (MSMM), aiming at improving the classification accuracy of 

multiclass EEG signals, and hence enhancing the performance of EEG-based brain computer interfaces 

(BCIs) involving multiple mental activities. In order to construct the MSMM, we propose a novel objec- 

tive function, which is composed of a multiclass hinge loss term and a combined regularization term. We 

first formulate the multiclass hinge loss by extending the margin rescaling loss to support matrix-form 

data. We then devise the regularization term by combining the squared Frobenius norm of tensor-form 

model parameter and the nuclear norm of matrix-form hyperplanes extracted from the model parameter. 

While the Frobenius norm prevents over-fitting when training the model, the nuclear norm captures the 

structural information within the matrix data. We further propose an efficient solver for MSMM based on 

the alternating direction method of multipliers (ADMM) framework. We conduct extensive experiments 

on two benchmark EEG datasets. Experimental results show that MSMM achieves much better perfor- 

mance than state-of-the-art classifiers and yields a mean kappa value of 0.880 and 0.648 for dataset IIIa 

of BCI III and dataset IIa of BCI IV, respectively. To our best knowledge, MSMM is the first classifier that 

supports multiclass classification for matrix-form EEG data. The proposed MSMM enables easier and more 

efficient implementation of robust multi-task BCIs, and therefore has potential to promote the wider use 

of BCI technology. 

© 2017 Elsevier B.V. All rights reserved. 
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. Introduction 

Brain computer interfaces (BCIs) have emerged as a new and

romising communication mode between human and computers

ith the development of neuroscience and engineering over the

ast 20 years [1] . They capture brain signals associated with men-

al activities and transform them into commands to communicate

ith or control external machines. BCIs not only benefit people

ith severe motor impairments caused by various neuromuscular

isorders through restoring their communication and movement

bility [2,3] , but also find a lot of applications for healthy indi-

iduals, such as virtual reality systems [4,5] and games [6,7] . The

rain signals employed in BCIs can be measured by several tech-

iques, mainly including electroencephalogram (EEG), magnetoen-

ephalogram (MEG), functional magnetic response imaging (fMRI)

nd functional near-infrared spectroscopy (fNIRS). Among them,

EG, which measures voltage fluctuations from scalps during brain

ctivities, is most widely used in practical applications due to its

implicity and efficiency [8] . As motor imagery (MI) based EEG–
∗ Corresponding author. 
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CIs offer promise for motor function recovery and are widely used

n rehabilitative applications, in the paper, we focus on motor im-

gery (MI) based EEG–BCIs. 

Fig. 1 (a) illustrates a typical pipeline of a MI based EEG–BCI sys-

em. When a user is imagining an action (e.g., left hand move-

ent), the EEG acquisition device first obtains the EEG signals.

hen the preprocessing is performed to remove the artifacts from

he signals. Based on the filtered signals, the system extracts dis-

riminative patterns/features and then based on them trains a clas-

ifier and identifies the motion that the user has imagined. While

uch a MI-based system has been widely used in many applica-

ions, most of them mainly focus on two-class motor imagination

atterns [9–13] . In practice, MI-based BCI systems supporting mul-

iple tasks are highly demanded [14] . However, implementing a

ulti-task MI-based BCI system is still a challenging problem, as

he involvement of more brain activities may make it quite diffi-

ult to precisely identify multiple tasks from single trial EEG sig-

als [15,16] . 

One of the main limitations for current BCI systems to support

ultiple motor tasks is that most of them employed classifiers

hat only accept input EEG signals in the form of vector, such as

ayes classifiers [17,18] , support vector machine (SVM) [19,20] and

https://doi.org/10.1016/j.neucom.2017.09.030
http://www.ScienceDirect.com
http://www.elsevier.com/locate/neucom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2017.09.030&domain=pdf
mailto:qqzheng@cse.cuhk.edu.hk
https://doi.org/10.1016/j.neucom.2017.09.030


870 Q. Zheng et al. / Neurocomputing 275 (2018) 869–880 

Fig. 1. The schematic illustrations of (a) a general EEG based BCI system, (b) classification workflow based on vector-form features, and (c) classification workflow with the 

proposed MSMM model supporting multiclass classification of matrix-form EEG data. 
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linear discriminant analysis (LDA) [10,21] . In practical applications,

each single trial EEG signal records voltage fluctuations at several

electrodes during a time period. In this regard, it is more natural

to be represented as a two-dimensional matrix with strong corre-

lation between rows and columns with respect to certain channels

and frequency bands in motor imagery tasks, rather than as a

vector. For example, EEG signals from C3, C4, Fz and Cz channels

between 7 and 30 Hz are correlated to reflect some motor imagery

tasks [22] . To this end, matrix-form features can better preserve

the structural information of EEG signals between the temporal

and spatial domain whereas vectorization would collapse the

topology and loss the structural information. 

A straightforward solution for this problem is to concatenate

a matrix into a vector to fit into these classifiers, as shown in

Fig. 1 (b). However, such a solution will suffer from the curse

of dimensionality [23] , especially for EEG signals. For example,

the popular dataset IIa of BCI Competition IV [24] contains 288

training samples and each sample unit is a 750 × 22 temporal-

spatial matrix. The dimension of feature vectors is extremely large

as d = 750 × 22 = 16 , 500 , whereas the samples size is only 288,

which may lead to severe over-fitting problem. Some effort s have

been devoted to suppressing the matrix-form features into vec-

tors [18,25] after preprocessing with common spatial patterns

(CSP) like filters [26–30] . These methods, however, still ignore the

topological structure latently embedded within single trial EEG

data. In this regard, it is of great interest to study classification

algorithms that can take full advantage of structural information

of EEG signals in matrix form, such as the correlation information

over frequencies and channels, to improve the performance of mul-

ticlass classification of EEG signals and hence facilitate the imple-

mentation of multi-task MI based BCI systems. 

Several classifiers have been proposed for classification of data

in matrix form. Wolf et al. [31] proposed a rank- k SVM to capture

the global structure of data matrices by regularizing the regression

matrix as the sum of k rank-one orthogonal matrices; Dyrholm

et al. [32] and Pirsiavash et al. [33] decomposed the regression

parameter into the product of two rank- k matrices; Kobayashi

et al. [34] proposed a similar bilinear SVM framework by regular-

izing the nuclear norm of the model parameter; and recently Luo

et al. [35] proposed a spectral elastic net regularization to con-

strain the combination of Frobenius norm and nuclear norm of

the regression parameter simultaneously. However, all these matrix
lassifiers are originally built for binary classification problems.

hough it is natural to break a multiclass classification task into

 series of binary ones by one-versus-rest (OvR) or one-versus-

ne (OvO) strategies [36,37] , this scheme would suffer from several

rawbacks. First, it would introduce bias when the scales of con-

dence values are different between the binary classifiers in the

rediction stage [38] . Second, it may result in unbalanced distri-

ution of input samples because the number of negative samples

s much larger than that of positive ones with OvR scheme [39] .

inally, it is quite time-consuming to train multiple binary classi-

ers, especially when the number of motor imagery tasks involved

n the BCI system is large. 

In this paper, we propose a novel classifier to address the multi-

lass classification of single trial EEG signals in matrix form, aiming

t improving the performance of BCIs supporting multiple motion

asks, as shown in Fig. 1 (c). We call our classifier multiclass sup-

ort matrix machine (MSMM). The MSMM is constructed based on

egularized risk minimization framework. We first propose a novel

bjective function, which consists of two components: a multiclass

inge loss term and a combined regularization term taking struc-

ural information of matrix-form data into consideration. We for-

ulate the multiclass hinge loss by extending the margin rescaling

oss [40] to support matrix-form data. The regularization term is a

ombination of the squared Frobenius norm of tensor-form model

arameter and nuclear norm of matrix-form hyperplanes extracted

rom the model parameter. While the Frobenius norm is applied

o prevent the over-fitting problem when training the model, the

uclear norm is leveraged to capture the global structure within

he matrix data. We further propose a solver for this convex ob-

ective function based on the alternating direction method of mul-

ipliers (ADMM) framework [41,42] . The solver converges quickly

nd reaches to the global optimal solution. We extensively evaluate

he proposed MSMM on two benchmark single trial EEG datasets:

ataset IIIa of BCI competition III [43] and dataset IIa of BCI compe-

ition IV [24] . Experimental results show that the proposed MSMM

chieves much better classification accuracy on multiclass single

rial EEG data than state-of-the-art classifiers, by taking full advan-

age of the structural information of EEG data. 

The contributions of this paper can be summarized as follows. 

• We propose a novel classifier for multiclass classification of

EEG data in matrix form, namely MSMM. Compared with
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s  
existing EEG signal classifiers, which are either based on

vector-form data or only capable of coping with two-class

classification of matrix data, the proposed MSMM can lever-

age the inherent structural information of EEG data for more

accurate multiclass classification, and hence improve the

performance of BCI systems with multiple tasks. To our best

knowledge, the proposed MSMM is the first classifier that

can support multiclass classification for EEG data in matrix

form. 

• We propose a novel objective function based on regular-

ized risk minimization framework by regularizing the com-

bination of the squared Frobenius norm of the tensor-form

model parameter and nuclear norm of matrix-form hyper-

planes extracted from the model parameter, and develop an

efficient solver based on ADMM framework to solve it. 

• We extensively evaluate the proposed MSMM on real mul-

ticlass EEG datasets, and achieve the state-of-the-art per-

formance. Although the proposed method is applied to MI-

based BCI systems, it is general enough to be used in other

BCI systems involving multiclass matrix-form signals. 

The rest of this paper is organized as follows: In Section 2 , we

eview the relevant studies on classification algorithms used in MI

ased EEG classification. We briefly introduce some preliminaries

n Section 3 . Then we illustrate the MSMM model and its effi-

ient solver for multiclass matrix classification in Section 4 . We

onduct experiments to evaluate the performance of our model in

ection 5 . We conclude this paper in Section 6 . 

. Related work 

Single trial EEG classification is very challenging due its poor

haracteristic, such as the low signal-to-noise ratio, the non-

tationarity of signals and the presence of noises. Building a clas-

ifier of high performance based on limited training EEG signals is

ssential. This section provides a comprehensive study on the clas-

ification algorithms used in motor imagery in EEG based BCIs. 

The existing classification algorithms can roughly be divided

nto two categories with respect to the type of the training data.

he first category is the vector-form classifiers, which require the

raining data to be in vector form. The state-of-the-art vector-form

lassifiers applied successfully into the EEG classification include

arious linear or nonlinear classifiers, such as linear discriminant

nalysis (LDA) [13] , support vector machine (SVM) [44] , k nearest

eighbor (KNN) [43] , neural network (NN) [45] , etc. Among these

lgorithms, SVM and LDA are most popular amongst researchers

or MI based EEG classification due to their simplicity and ro-

ustness [46] . Many studies have focused on how to transform

he acquired high-dimensional EEG signals into discriminant fea-

ures that can be fed into these simple classifiers. Common spatial

attern (CSP) is the most widely used algorithm for EEG feature

xtraction, which seeks optimal projections such that the filtered

ariance between two classes are maximized or minimized. Many

ariants of CSP have been studied in the literature [18] . Thomas

t al. [47] proposed filter-bank CSP (FBCSP) to combine features in

ifferent frequency bands by using a bank of multiple bandpass

lters. Sun and Zhang [48] defined a variability coefficient in the

SP formulation to denote the weighted average of historical co-

ariance. Both algorithms used SVM for classification. Wang and Li

49] proposed an � 1 norm based CSP to alleviate the negative im-

act of outliers and noises without large deviations. Arvaneh et al.

50] proposed KLCSP by utilizing Kulback–Leibler (KL) divergence

o measure the changes in the distribution of data in each class.

he extracted features from � 1 -CSP and KLCSP are recognized by

he LDA algorithm. The work in [51] used a clustering technique to

xtract representative features and applied SVM for classification.
hough these methods have been devoted to efficiently improving

he single trial EEG classification, they all suppress the matrix-form

eatures into vectors, resulting in loss of topological structural in-

ormation within EEG signals and hence degradation of the classi-

cation performance. 

The second category is matrix-form classifiers, which are

otivated by the development of matrix analysis and accept the

atrix-form training data. Tomioka and Aihara [52] proposed a

pectral � 1 norm regularized logistic regression. The optimization

roblem is formulated as semi-definite programming (SDP) and

olved by interior point method. Dyrholm et al. [32] decomposed

he regression parameter into the product of two rank- k matri-

es, where the rank- k is required to be predetermined. Luo et al.

35] defined a spectral elastic net penalty, which is the linear com-

ination of Frobenius norm and nuclear norm of the regression

atrix. Tomioka et al. [53] and Christoforou et al. [54] directly ex-

loited the covariance matrix of the signals as the representation

f EEG features and built the matrix logistic regression classifier.

ollowing [53,54] , Zeng and Song [55] integrated the within

ession non-stationary regularization into a convex empirical risk

inimization problem and solved it with accelerated proximal

radient-based algorithm. These methods all take advantage of

he low-rank assumptions to exploit the correlation between rows

nd columns within each single trial EEG data. However, all these

ethods are built for binary classification problems and their

xtensions for multiclass problem may be difficult. This limits

heir application to multi-task EEG based BCIs. 

. Preliminaries 

In order to facilitate the description of our method, in this sec-

ion, we introduce some notations that run throughout our formu-

ation and solver. We also give a brief introduction of the multi-

lass SVM [56] , based on which we devise the proposed MSMM

upporting the classification of EEG signals in matrix form to take

ull advantage of correlations among different channels and fre-

uency bands. 

.1. Notations 

The singular value decomposition of a matrix X ∈ R 

I 1 ×I 2 

s denoted as X = U�V 

T , where U is a unitary matrix, � =
iag(σ1 , σ2 , . . . , σr , 0 , . . . , 0) is a rectangular diagonal matrix with r

the rank of X ) singular values on the diagonal, and V 

T is the con-

ugate transpose of the unitary matrix V . The Frobenius norm of X

s denoted as || X || F = 

√ ∑ I 1 
i 1 =1 

∑ I 2 
i 2 =1 

x 2 
i 1 i 2 

; the nuclear (trace) norm

s || X || ∗ = 

∑ r 
i =1 σi . For any τ ≥ 0, the singular value threshold-

ng operator is defined as D τ (X ) = U�τ V 

T , where �τ = diag([ σ1 −
] + , . . . , [ σr − τ ] + , 0 , . . . , 0) and [ ·] + = max (·, 0) . The inner prod-

ct between X , Y ∈ R 

I 1 ×I 2 is the sum of element-wise product, i.e.,

 X , Y > = 

∑ I 1 
i 1 =1 

∑ I 2 
i 2 =1 

x i 1 i 2 × y i 1 i 2 . 

As our method involves processing multiple matrices, we intro-

uce the concept of tensor here. Tensor is a generalized array with

ultiple dimensions. For example, a zero-order tensor is a scalar;

 first-order tensor is a vector; a second-order tensor is a matrix

nd a third-order or higher one is called a high-order tensor. The

robenius norm of a high-order tensor X ∈ R 

I 1 ×I 2 ×···×I n can be de-

ned as ||X || F = 

√ ∑ I 1 
i 1 =1 

∑ I 2 
i 2 =1 

· · ·∑ I n 
i n =1 

x 2 
i 1 i 2 ... i n 

. The inner product

etween two same-dimensional tensors X , Y ∈ R 

I 1 ×I 2 ×···×I n is de-

oted as < X , Y > = 

∑ I 1 
i 1 =1 

∑ I 2 
i 2 =1 

· · ·∑ I n 
i n =1 

x i 1 i 2 ... i n × y i 1 i 2 ... i n . 

.2. Multiclass support vector machine 

While a lot of methods have been proposed to extend SVM to

upport multiclass classification of vector-form data by OvR and
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OvO strategies, Crammer and Singer proposed a true multiclass

SVM [57] . As our method is inspired by this work, we briefly re-

view it here and readers can refer to [56,57] for more details. For

a training set { x i , y i } n i =1 
∈ {X , Y} with the i th feature vector x i ∈ R 

m

and label y i ∈ { 1 , 2 , 3 , . . . , k } , the idea of the multiclass SVM is to

learn a discriminant function f w 

with model parameter w to pre-

dict a most possible class label ˆ y by maximizing f w 

over all y ∈ Y
for a testing input x with 

ˆ y = arg max 
y ∈Y 

f w 

( x , y ) . (1)

Here, f w 

( x , y ) takes the linear form 

f w 

( x , y ) = w 

T Ψ ( x , y ) , y ∈ Y, (2)

where Ψ ( x , y ) ∈ R 

N is a feature mapping between input sample x

and output y ; w ∈ R 

N defines a weight for each element in the

feature mapping Ψ, and f w 

is a measurement showing how the

input x matches an output y . 

Based on the regularized empirical risk minimization, the ob-

jective function of multiclass SVM is defined as: 

min 

w , ξ≥0 

1 

2 

w 

T w + 

C 

n 

n ∑ 

i =1 

ξi 

s.t. ∀ i ∈ { 1 , 2 , . . . , n } , ˆ y i ∈ Y : 

�( ̂  y i , y i ) + w 

T Ψ ( x i , ̂  y i ) − w 

T Ψ ( x i , y i ) ≤ ξi . (3)

where n is the number of training samples; C is a non-negative

parameter to balance the loss term and the regularization term; ξ
denotes a sequence of slack variables for the hinge loss; � is the

Hamming loss function; ˆ y i is the estimated output of the input x i ;

and y i is the ground truth. 

Albeit the effectiveness of the multiclass SVM in many appli-

cations, it is tailored for vector-form data and incapable of suffi-

ciently taking advantage of the rich structural information hidden

in matrix-form EEG data for better multiclass classification. 

4. Method 

In this section, we first introduce the proposed matrix classifier

MSMM, aiming at efficiently capturing the correlation within each

EEG matrix for better multiclass classification, and then we pro-

vide the details of the proposed solver to minimize the objective

function of the proposed MSMM. 

4.1. MSMM formulation 

As mentioned before, each EEG sample can be naturally rep-

resented in matrix form, which can well preserve spatio-temporal

information within the sample. However, most existing classifiers

aim at coping with features in vector form. While a few matrix

classifiers have been proposed, they focus on binary classification

and hence are incapable of dealing with multi-task BCIs. This mo-

tivates us to develop a new classifier for multiclass classification of

EEG signals. 

Given a k -class ( k ≥ 2) matrix-form training dataset { X i , y i } n i =1 
∈

{X , Y} , where X i ∈ R 

I 1 ×I 2 is the i th feature matrix and y i ∈
{ 1 , 2 , 3 , . . . , k } is the corresponding ground truth label, we devise

a novel objective function in order to train an efficient multiclass

classifier to predict the label of a new observation: 

min 

W, ξ≥0 

1 

2 

||W|| 2 F + τ
k ∑ 

c=1 

|| W c || ∗ + 

C 

n 

n ∑ 

i =1 

ξi , 

s.t. ∀ i ∈ { 1 , 2 , . . . , n } , ˆ y i ∈ Y : 

�( ̂  y i , y i ) + 〈W, δΨ (X i , ̂  y i , y i ) 〉 ≤ ξi , (4)

where W ∈ R 

I 1 ×I 2 ×k denotes the regression parameter in the form

of tensor and ||W|| is the Frobenius norm of W; each frontal slice
F 
 W : , : ,c } k c=1 
in W (short for { W c } k c=1 

) represents the matrix-form hy-

erplane for the c th class data; τ and C are positive scalars to con-

train the nuclear norm and loss term respectively; ξ denotes a

equence of slack variables for the hinge loss; and δΨ (X i , ̂  y i , y i )

enotes the difference of feature mappings between an arbitrary

abel ˆ y i and the ground truth label y i for X i with the following

efinition: 

Ψ (X i , ̂  y i , y i ) = Ψ (X i , ̂  y i ) − Ψ (X i , y i ) . (5)

ere the feature mapping Ψ (X , c) ∈ R 

I 1 ×I 2 ×k is a sparse tensor

ith all zero elements except Ψ: , : ,c = X . 

Our objective function is devised based on a spectral elastic net

egularization, which is a combination of the squared Frobenius

orm ||W|| 2 
F 

and the nuclear norm 

∑ k 
c=1 || W c || ∗. The squared

robenius norm has the similar function as its vector-form coun-

erpart w 

T w defined in Eq. (3) ; it controls model complexity and

revents over-fitting problems in the training phase. In order to

ake full advantage of the structural information of matrix (i.e., the

orrelation between rows and columns), we harness the nuclear

orm to add penalty on the singular values of all the hyperplane

 c (c ∈ 1 , 2 , ... . . . , k ) , which is defined as ( || W c || ∗ = 

∑ r 
i =1 σi )

o approximate the rank of W c in a convex manner. Based on

he fundamental assumption that the true model parameter is

parse in terms of its rank [23] and the fact that nuclear norm is

onsidered as the best convex approximation of low rank, such a

ombined regularization term can lead to an optimal solution of

sufficiently and elegantly encoded the structural information of

atrix for better classification performance. Note that the τ is a

ey parameter in our objective function; it determines how large

he penalty added to the nuclear norm is, and hence implicitly

eflects how much structural information of the EEG matrix should

e involved in the classification. The τ should be set as a positive

calar to guarantee the function of the nuclear norm term. 

.2. Solver for MSMM 

Directly solving Eq. (4) can be extremely difficult, because (1)

here exist n slack variables to be estimated and (2) both the

ulticlass hinge loss and the nuclear norm are non-smooth and

on-differentiable. In order to tackle these issues, we first re-

uce the n slack variables to a single one by leveraging the in-

ependence of each estimated label and then propose a new al-

orithm based on the alternating direction method of multipliers

ADMM) [41,42] framework to solve the problem. 

The constraints in Eq. (4) indicate that for each training sam-

le, the score of < W, Ψ (X i , ̂  y i ) > of an arbitrary label ˆ y i must be

maller than the score < W, Ψ (X i , y i ) > of the correct label y i by a

equired margin �( ̂  y i , y i ) . If the margin is violated, the slack vari-

ble ξ i of the sample becomes non-zero. In this regard, 	i ξ i is an

pper bound on the empirical risk on the training samples. Train-

ng such a multiclass support matrix machine on large-scale prob-

ems is very challenging. We derive an equivalent formulation to

educe the slack variables and reformulate Eq. (4) as follows: 

min 

, ξ≥0 

1 

2 

||W|| 2 F + τ
k ∑ 

c=1 

|| W c || ∗ + Cξ

s.t. ∀ ( ̂  y 1 , ̂  y 2 , . . . , ̂  y n ) ∈ Y 

n : 

1 

n 

n ∑ 

i =1 

{ �( ̂  y i , y i ) + 〈W, δΨ (X i , ̂  y i , y i ) 〉} ≤ ξ , (6)

here ξ is an equivalent upper bound of the inequalities in all

onstraints. In principle, Eq. (6) enlarges the number of constraints

o |Y| n , where each element denotes a possible estimated label

ombination ( ̂  y 1 , ̂  y 2 , . . . , ̂  y n ) ∈ { 1 , 2 , . . . , k } n . Compared with Eq. (4) ,

q. (6) has only one slack variable ξ , which is shared among all
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onstraints instead of setting one slack variable for each constraint.

his reformulation is obtained based on the following theorem. 

heorem 1. The optimal solution W 

∗ of Eq. (4) is equal to the one in

q. (6) , with ξ ∗ = 

1 
n 

∑ n 
i =1 ξ

∗
i 

. See its proof in Appendix 1(1) . 

We further convert Eq. (6) into an unconstrained problem as: 

in 

W 

1 

2 

||W|| 2 F + τ
k ∑ 

c=1 

|| W c || ∗

+ max 
{ ̂ y 1 ... ̂ y n }∈Y n 

C 

n 

n ∑ 

i =1 

{
�( ̂  y i , y i ) + 〈W, δΨ (X i , ̂  y i , y i ) 〉 

}
. (7) 

n this case, our MSMM model aims to minimize a regularized loss

hich maximizes the margins between different categories. 

Most existing matrix classifier solvers, such as Nesterov

ethod [23] , require the objective function has Lipschitz-

ontinuous derivative. However, both multiclass hinge loss and

he nuclear norm in our formulation are non-smooth and non-

ifferentiable. In this regard, existing matrix classifier solvers can-

ot be employed to solve our formulation. 

The Eq. (7) consists of three terms and all of them are convex.

he first two terms (the Frobenius norm and the nuclear norm of

, respectively) are convex because they satisfy the triangle in-

quality and positive homogeneity properties [58] . The third term

s the maximum of a set of linear functions and in this case, it

s also convex. Based on the observation that all the terms in Eq.

7) are convex, we therefore develop a novel solver based on the

ADMM) framework [41,42] , which is a widely used scheme to

olve convex optimization problems by breaking them into sub-

roblems that are much easier to be coped with. 

We first introduce an additional decision variable S ∈ R 

I 1 ×I 2 ×k 

o split the primal problem into two parts: 

rgmin 

W, S 
H(W) + G (S) , 

s.t. W − S = 0 . (8) 

ith 

(W) = max 
{ ̂ y 1 ... ̂ y n }∈Y n 

C 

n 

n ∑ 

i =1 

{ �( ̂  y i , y i ) 

+ 〈W, δΨ (X i , ̂  y i , y i ) 〉} , 

G (S) = 

1 

2 

||S|| 2 F + τ
k ∑ 

c=1 

|| S c || ∗, (9) 

here S c ∈ R 

I 1 ×I 2 denotes the c th frontal slice of S . 

We then reformulate Eq. (8) by using augmented Lagrangian

ethod: 

 (S, W, V) = H(W) + G (S) + 〈V, (S − W) 〉 
+ 

ρ

2 

|| (S − W) || 2 F , (10) 

here V ∈ R 

I 1 ×I 2 ×k is the Lagrange multiplier and ρ is a positive

calar hyperparameter bounded away from 0. 

Next we decouple the objective function into two sub-problems

with respect to S and W) and solve it in an iterative fashion. At

ach iteration, our solver first minimizes S and W alternatively,

nd updates the Lagrangian multiplier V accordingly as 

S (t+1) = arg min 

S 
L (S, W 

(t) , V (t) ) , 

 

(t+1) = arg min 

W 

L (S (t+1) , W, V (t) ) , 

V (t+1) = V (t) + ρ(S (t+1) − W 

(t+1) ) . (11) 

here t and t + 1 represent the ( t )th and (t + 1) th iteration,

espectively. 
.2.1. Solve subproblem of S
Assume W is fixed, minimizing the objective function is to min-

mize the sum of all terms related to S, denoted as L S : 

in 

S 
L S = G (S) + 〈V, S〉 + 

ρ

2 

||S − W|| 2 F . (12)

We further concern the optimization problem in Eq. (12) to up-

ate S, namely, we update S by minimizing L S . As L S is a non-

ifferentiable but convex function, we derive the subgradient of L S 
nd denote it as a tensor K ∈ R 

I 1 ×I 2 ×k with ∀ c , 

 c = S c + τ∂|| S c || ∗ + V c + ρ(S c − W c ) , (13)

here K c , S c , V c and W c is the c th frontal slice of K, S, V and

respectively; ∂ || S c || ∗ denotes the sub-gradient set of the nuclear

orm of S c . 

In this case, suppose S ∗c is an optimum of L S , the subgradient of

 S at point S ∗c satisfies 0 ∈ ∂L S (S ∗c ) . 
To figure out S ∗c , we have the following theorem. 

heorem 2. For τ ≥ 0, one optimal solution for the following prob-

em 

rg min 

S 
G (S) + 〈V, S〉 + 

ρ

2 

||S − W|| 2 F 

s 

 

∗
c = 

1 

1 + ρ
D τ (ρW c − V c ) , (14)

here D τ (.) is the singular value thresholding operator. See its proof

n Appendix 1(2) . 

Based on Eq. (14) , each singular value of S c will reduce the

alue of τ or will be set to zero if it is smaller than τ by the singu-

ar thresholding operator D τ ( ·). In this regard, τ softly thresholds

he rank of S c . 

.2.2. Solve subproblem of W
Similar to the subproblem of S, we minimize the sum of all

erms related to W in Eq. (10) and denote it as L W 

: 

in 

W 

L W 

= H(W) + 〈−V, W〉 + 

ρ

2 

||S − W|| 2 F (15)

L W 

is non-negative weighted sum of the hinge loss, a linear

unction and a square function. It is also convex as all the three

erms are convex. In principle, Eq. (15) contains |Y| n constraints;

ence, it is intractable to be fed into a quadratic solver. To tackle

his issue, we apply the cutting plane (CP) algorithm, which has

een proved to achieve nice bounded approximated solutions by

electing only a small subset of constraints [40] . 

In CP, one of the most important steps is to construct an exten-

ible constraint subset � during the iterations, starting with � = ∅ .
t each iteration, we add the most violated constraint to � and

ptimize the problem in Eq. (15) over all constraints in �. The al-

orithm has also been proved to converge after polynomial itera-

ion independent of the number of training samples, which makes

t suitable to handle large scale data [40] . 

In this case, the most violated constraint with respect to mini-

izing L W 

at each iteration can be defined as: 

∗ = max 
{ ̂ y 1 ··· ˆ y n }∈Y n 

C 

n 

n ∑ 

i =1 

{ �( ̂  y i , y i ) + 〈W, δΨ (X i , ̂  y i , y i ) 〉} , (16)

o derive ˆ y i , we have the following theorem. 

heorem 3. Each estimated label in the most violated constraint

hould satisfy 

ˆ 
 i = arg max 

y ∈Y 
�(y, y i ) + 〈 W , δΨ (X i , y, y i ) 〉 . (17)

See its proof in Appendix 1(3) . 
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1 http://www.bbci.de/competition/iii/#download . 
2 http://www.bbci.de/competition/iii/#data _ set _ iiia . 
3 http://www.bbci.de/competition/iv/#dataset2a . 
In this way, we can solve L W 

by gradient descent method with a

much smaller constraint subset �. Since L W 

is non-differential but

convex at W, the sub-gradient of L W 

with respect to W is 

∇ W 

= ρ(W − S) − V + 

C 

n 

n ∑ 

i =1 

δΨ (X i , ̂  y i , y i ) , (18)

where ˆ y i is calculated with Eq. (17) . 

Thus we can update W using: 

W 

(t+1) = W 

(t) − η(t) ∇ W 

, (19)

where η( t ) denotes the step size for gradient descent method at

t th iteration. Instead of fixing or choosing η( t ) randomly, we deter-

mine the step size automatically by employing Pegasos algorithm

[59] with: 

η(t) = 

C 

tρ(t) 
. (20)

Finally the augmented Lagrangian multiplier can be updated with

V (t+1) = V (t) + ρ(t) (S (t+1) − W 

(t+1) ) . (21)

ρ(t+1) = βρ(t) (22)

In each iteration, ρ is automatically increased via multiplying by

β > 1 ( β = 1 . 1 for our experiments). This scheme speeds up the

convergence of Lagrangian multiplier V and thus the whole algo-

rithm. The overall of the algorithm is summarized in Algorithm. 1 .

Algorithm 1: The proposed solver for MSMM. 

Input : Training data { (X i , y i ) } n i =1 
, input coefficients C and τ , 

Lagrangian multiplier V , ρ , β and ε
Output : W 

1 Initialize: W, S, V ← 0 , ξ ← 0 , � ← ∅ 
while t ← 1 to maxIter do 

2 Update each frontal slice of S with Eq. (14) 

/*˜Update W with cutting plane algorithm˜*/ 

for i ← 1 to n do 

3 ˆ y i = arg max 
y ∈Y 

{ �(y, y i ) + 〈W, δΨ (X i , y, y i ) 〉} 
4 end 

5 if 1 
n 

∑ n 
i =1 { �( ̂  y i , y i ) + 〈W, δΨ (X i , ̂  y i , y i ) 〉} ≥ ξ + ε then 

6 � ← � ∪ { ̂  y 1 . . . ̂  y n } 
W ← argmin 

W 

˜H(W) − 〈V, W〉 + 

ρ
2 ||S − W|| 2 

F 
, 

s.t., ∀{ ̂  y 1 . . . ̂  y n } ∈ �. 

ξ = max 1 n 

∑ n 
i =1 { �( ̂  y i , y i ) + 〈W, δΨ (X i , ̂  y i , y i ) 〉} 

7 else 

8 break 

9 end 

10 V ← V + ρ(S − W) 

11 ρ ← βρ

12 end 

13 return W 

5. Experiments 

We extensively evaluate the proposed method based on two

widely used public single trial EEG datasets of multi-task mo-

tor imagery. Firstly, we experimentally evaluate the influence of

the key parameter τ in the objective function on the perfor-

mance of our method. Secondly, as we are not aware of any pre-

vious multiclass classifiers for the data in matrix form, we com-

pare our method with two state-of-the-art binary classifiers for
atrix data (bilinear SMM (BSMM) [34] and support matrix ma-

hine (SMM) [35] ), a competitive multiclass classifier for data

n vector form (multiclass SVM (MSVM) [40] ) and three widely

sed binary classifiers for vector data (linear discriminant analysis

LDA) [21] , k -nearest neighbor (KNN) [60] and multilayer percep-

ron (MLP) [61] ). We also compare our method with some meth-

ds that achieved leading performance on both datasets in the

ompetitions. 

.1. EEG datasets 

The first dataset is the Dataset IIIa 1 of BCI Competition III [43] .

his dataset contains 60-channel single trial EEG signals from three

ubjects (denoted as subject k 3 b, k 6 b and l 1 b ) when performing

our classes of motor imagery, including left-hand, right-hand, feet

nd tongue (namely class 1,2,3 and 4, respectively). Both training

nd testing sets consist of 45 trials per class for subject k 3 b , and

0 trials per class for subject k 6 b and l 1 b . The EEG was sampled

ith 250 Hz and filtered between 1 and 50 Hz with notch filter. As

he the performance of subject k 6 b is not good during the data col-

ection, 2 we only use the data of k 3 b and l 1 b in our experiments.

or this dataset, data of all channels during time segment from 3 s

o 7 s in each trial is chosen for analysis. 

The second dataset is the Dataset IIa 3 of BCI Competition IV [24] .

he dataset records single trial EEG data from nine subjects per-

orming four classes of motor imagery, including left-hand, right-

and, feet and tongue. The training and testing data are acquired

n two sessions conducted on two different days. Each session in-

ludes six runs with 48 trials in each run. There are 72 trials per

otor imagery task and 288 trials in total per session. Besides 22

EG channels, 3 monopolar EOG channels were also used to record

he signals. Then signals were sampled with 250 Hz and bandpass-

ltered between 0.5 and 100 Hz. For this dataset, we consider only

he EEG channels and the time segment of [1 s,4 s] after onset of

he visual cue in each trial. 

.2. Experimental settings 

We implement our method in Matlab 2014b on a workstation

ith Intel Xeon CPU E5-1620 v2 3.70 GHz, 16.0 GB RAM and 64-

it Windows 7 System. Fig. 2 shows the pipeline of the EEG sig-

al processing framework equipped with our MSMM for multiclass

ingle trial EEG classification. In this paper, we focus on the clas-

ifier for EEG features in matrix form, namely the last part of the

ipeline. The preprocessing and feature extraction techniques are

eyond the scope of this work. For preprocessing, based on Ang’s

t al. work [25] , we employed non-overlapping bandpass filters of

ix-order Butter-worth to filter out the artifacts and unrelated sen-

orimotor rhythms; and then we applied a traditional multiclass

SP method [26] to select the most dominant channels for each

otor imagery task. For feature extraction, we have empirically ex-

erimented with a number of existing algorithms to extract fea-

ures in matrix form, such as band powers (BP) [62] , power spec-

ral density (PSD) [63] , and time-domain parameters (TDP) [64] . It

urned out that the TDP consistently delivered low computational

ost and top performance. So in this work, we choose TDP. 

For classification, we applied our model to train a classifier with

atrix features as input. In our method, C and τ weight the loss

nd nuclear norm term, respectively, which need to be determined

efore training. 

In the experiment, we employ the grid search algorithm guided

y the cross validation to determine the values of C and τ . Specif-

http://www.bbci.de/competition/iii/#download
http://www.bbci.de/competition/iii/#data_set_iiia
http://www.bbci.de/competition/iv/#dataset2a
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Fig. 2. The pipeline of the EEG signal processing framework equipped with our MSMM. 
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Table 1 

Confusion matrix for binary classification. 

Data class Classified as pos Classified as neg 

pos true positive (tp) false negative (fn) 

neg false positive (fp) true negative (tn) 
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cally, C and τ were selected from the candidate sets {0.1, 1, 10,

00} and {0, 0.1, 0.5, 1, 2, 5, 10}, which are figured out by some

ilot experiments. Then we train a MSMM with each pair ( C,

) in the Cartesian product of these two sets and evaluate their

erformance on the fivefold cross validation. Finally, we select the

ettings achieved the highest score in the validation procedure. For

ompetitive classifiers, we employed the same preprocessing and

eature extraction schemes for fair comparison. In order to train

ector-form classifiers (including MSVM, LDA, KNN and MLP), we

oncatenate the matrices into vectors and then employ PCA as a

reprocessing step to reduce the dimension and prevent memory

verflow. For the PCA, we determine the principle components by

0% energy ratio. All compared binary classifiers are extended to

ope with multiclass cases with OvR strategy. 

.3. Evaluation metrics 

In order to comprehensively measure the classification perfor-

ance of different classifiers, we employ four evaluation metrics,

amely, kappa coefficient κ , precision, recall and F 1 score. We con-

ider kappa coefficient κ rather than accuracy because it is more

obust than accuracy by taking into account the accuracy occurring

y chance, and it is defined as: 

= 

acc − p 0 
1 − p 0 

. (23) 

here acc is the classification accuracy and p 0 is the accuracy of

andom guess (e.g., for a four-class dataset with balanced sam-

le sizes among different classes, p 0 = 

1 
4 ). Note that κ > 0 means

he accuracy we gain is better than the one of random guess and

igher κ value means better classification accuracy. 

In the classification, precision is a measure of classification rele-

ancy. A low precision can indicate many false positives. Recall can

e regarded as a measure of classification completeness. A low re-

all indicates many false negatives. F 1 score is the harmonic mean

f the precision and recall. A system with high recall but low pre-

ision returns many results but most of its predicted labels are in-

orrect when compared to the ground truth. A system with high

recision but low recall returns very few results but most of its

redicted labels are correct. High scores for both precision and re-

all indicate that a classifier is of high prediction quality. Since pre-

ision, recall and F 1 score are metrics for binary classification, we

mploy a macro-averaging scheme to average the same measures

alculated for each class [65] . These measures for multiclass clas-

ification are obtained based a generalization of the measures of

able 1 for k classes; they are defined as: 

precision = 

1 

k 

k ∑ 

c=1 

t p c 

t p c + f p c 
, 
recall = 

1 

k 

k ∑ 

c=1 

t p c 

t p c + f n c 
, 

F 1 = 

2 · precision · recall 

precision + recall 
, (24) 

here tp c , fp c , fn c , tn c are the true positive, false positive, false neg-

tive and true negative for class c . 

.4. Results 

.4.1. Experiments for the influence of τ
We first delve into the effect of parameter τ in the proposed

bjective function ( Eq. (4) ) on the performance of the MSMM. In

rinciple, we can adjust the magnitude of the penalty added on

he nuclear norm term by setting different values of τ , and hence

etermine how much structural information is involved in the clas-

ification. In fact, by carefully observing Eq. (14) , we can find that

he τ manages the penalty by controlling the number of singular

alue (rank) of the regression parameter. Generally, a larger τ indi-

ates a more powerful penalty on the structure information. Note

hat when τ = 0 , the MSMM degenerates to the MSVM. 

To study the effect of τ , we fix C according to the previous

ross validation and train MSMM with τ = { 0 , 0 . 1 , 0 . 5 , 1 , 2 , 5 , 10 } .
he classification performance curves with respect to the changes

f τ are presented in Fig. 3 . For a clear illustration, we just show

he curves of subjects S3, S7 and S9 in Fig. 3 (b). In fact, similar

rends occur for other six subjects in the second dataset. 

It is observed that, for all the five subjects, when τ = 0 , the

uclear norm in the objective function is inactive and hence our

esults are the same as those of MSVM (please check Tables 2 and

 for the exact values). With the increase of τ , the κ values of

ll the five subjects increase with varying rise rate, demonstrating

hat taking the structural information encoded in the matrix form

f EEG data into account can improve the classification accuracy. At

 certain value of τ (the value is different for different subject), the

reaches its optimal value. When τ crosses the optimal value and

ontinues to increase, the κ value decreases. This is because when

he τ is too large, most of the singular values in the regression

arameter would be set to zero and most structural information

mbedded in the EEG matrix would be discarded. In this regard, it

s necessary to choose a proper τ for each subject to improve the
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Table 2 

Performance κ (error rate %) comparison of different classification algorithms on dataset IIIa of BCI III. 

Subject BSMM SMM MSVM LDA KNN MLP MSMM 

k3b 0.941 (4.4) 0.852 (11.1) 0.889 (8.3) 0.889 (8.3) 0.763 (17.8) 0.807 (14.4) 0.948 (3.9) 

l1b 0.800 (15.0) 0.711 (21.7) 0.678 (24.2) 0.478 (39.2) 0.700 (22.5) 0.489 (38.3) 0.811 (14.2) 

avg 0.871 (9.7) 0.782 (16.4) 0.784 (16.3) 0.683 (23.8) 0.732 (20.1) 0.648 (26.4) 0.880 (9.0) 

Fig. 3. The effect of parameter τ on the classification performance: (a) the classifi- 

cation performance curves of subjects k 3 b and l 1 b in the first dataset with respect 

to the changes of τ and (b) the classification performance curves of subjects S 3, S 7 

and S 9 in the second dataset. 

Table 3 

Testing performance (precision) comparison of different classification algorithms 

on dataset IIIa of BCI III. 

Subject BSMM SMM MSVM LDA KNN MLP MSMM 

k3b 0.957 0.899 0.918 0.921 0.836 0.872 0.962 

l1b 0.862 0.794 0.782 0.616 0.781 0.652 0.869 

avg 0.910 0.847 0.850 0.768 0.808 0.762 0.916 

Table 4 

Testing performance (recall) comparison of different classification algorithms on 

dataset IIIa of BCI III. 

Subject BSMM SMM MSVM LDA KNN MLP MSMM 

k3b 0.956 0.889 0.917 0.917 0.822 0.856 0.961 

l1b 0.850 0.783 0.758 0.608 0.775 0.617 0.858 

avg 0.903 0.836 0.838 0.763 0.799 0.736 0.910 

Table 5 

Testing performance ( F 1 score) comparison of different classification algorithms 

on dataset IIIa of BCI III. 

Subject BSMM SMM MSVM LDA KNN MLP MSMM 

k3b 0.956 0.894 0.917 0.919 0.829 0.864 0.962 

l1b 0.856 0.789 0.770 0.612 0.778 0.634 0.864 

avg 0.906 0.841 0.844 0.766 0.804 0.749 0.913 
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lassification accuracy. We experimentally find that choosing a τ
etween (0, 2] can achieve appealing results for both datasets. 

.4.2. Comparison of other classifiers 

To evaluate the effectiveness of our method, we compare the

lassification performance of our method with other state-of-the-

rt or widely used classifiers on the two datasets under dif-

erent evaluation metrics. Our competitors include bilinear SMM

BSMM) [34] , SMM [35] , multiclass SVM (MSVM) [40] , LDA [21] ,

NN [60] and MLP [61] . To produce their best performance, we ac-

uire their implementations in public domain, generating a large

umber of results by trying and fine-tuning their parameters via

ross validation for fair comparison. In addition, we also compare

ur method with methods that achieved leading performance on

he two public EEG datasets; they are winner methods reported

on the BCI competitions and newly proposed methods ( [18,66] )

hat achieve good performance. 

Results of the first dataset. The kappa values of different classi-

ers on the first dataset are reported in Table 2 . We also include

he error rate (%) for easy comparison. Among these seven meth-

ds, the BSMM, SMM and our MSMM are classifiers for matrix-

orm EEG data while the rest methods are learned for vector-form

EG data. It is observed that the BSMM and our MSMM achieve

uch better results than other methods, demonstrating that lever-

ging the structural information embedded in data matrices is

reatly beneficial to the improvement of the classification perfor-

ance. The SMM achieves mediocre results, though it is also a

lassifier for data in matrix form. This may be because the unbal-

nced training data when employing the OvR strategy could re-

ult in relatively large variations of the confidence values for dif-

erent categories. The different scales of confidence values would

ias to any specific task, which explains that the high performance

n some MI tasks but degraded performance on all MI tasks. Sim-

lar phenomena also occur on other binary classifiers like LDA. 

We further compute the precision, recall and F 1 score measures

n the first dataset and report the results in Tables 3–5 , respec-

ively. It is observed that both MSMM and BSMM have an obvi-

us improvement compared with other classifiers. On the contrary,

he binary vector-form classifiers like LDA, KNN and MLP have

elatively lower average precision and recall compared with the

atrix-form classifiers (including MSMM, BSMM and SMM) and

ulticlass MSVM. In addition, our method, integrating the multi-

lass formulation and matrix-form classifier, achieves state-of-the-

rt results for both subjects and yields a mean value of 0.916,

.910 and 0.913 for precision, recall and F 1 score, respectively. This

emonstrates the effectiveness of our method for multi-task EEG

ignal analysis. 

Table 6 shows the performance comparison of the proposed

ethod with those of the winners of the competition and the

ewly proposed work [66] for this dataset. Although the first win-
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Table 6 

Performance κ (error rate %) comparison of the proposed MSMM with the winners and a 

newly published method [66] of the dataset IIIa of BCI III. 

Subject 1st winner 2nd winner 3rd winner [66] MSMM 

k3b 0.822 (13.3) 0.904 (7.2) 0.948 (3.9) 0.711 (21.7) 0.948 (3.9) 

l1b 0.800 (15.0) 0.711 (21.7) 0.522 (35.8) 0.489 (38.3) 0.811 (14.2) 

avg 0.811 (14.2) 0.808 (14.4) 0.735 (19.9) 0.600 (30) 0.880 (9.0) 

Table 7 

Performance κ (error rate %) comparison of different algorithms on dataset IIa of BCI IV. 

Subject BSMM SMM MSVM LDA KNN MLP MSMM 

S1 0.727 (20.5) 0.694 (22.9) 0.722 (20.8) 0.671 (24.7) 0.708 (21.9) 0.588 (30.9) 0.731 (20.1) 

S2 0.403 (44.8) 0.230 (57.6) 0.370 (47.2) 0.421 (43.4) 0.398 (45.1) 0.315 (51.4) 0.426 (43.1) 

S3 0.750 (18.8) 0.685 (23.6) 0.764 (17.7) 0.722 (20.8) 0.773 (17.0) 0.639 (27.1) 0.843 (11.8) 

S4 0.505 (37.2) 0.537 (34.7) 0.357 (48.3) 0.509 (36.8) 0.449 (41.3) 0.505 (37.2) 0.593 (30.6) 

S5 0.394 (45.5) 0.315 (51.4) 0.417 (43.8) 0.426 (43.1) 0.380 (46.5) 0.407 (44.4) 0.495 (37.8) 

S6 0.315 (51.4) 0.152 (63.5) 0.185 (61.1) 0.315 (51.4) 0.236 (57.3) 0.171 (62.2) 0.407 (44.4) 

S7 0.810 (14.2) 0.722 (20.8) 0.662 (25.3) 0.565 (32.6) 0.694 (22.9) 0.718 (21.2) 0.847 (11.5) 

S8 0.708 (21.9) 0.708 (21.9) 0.454 (41.0) 0.713 (21.5) 0.620 (28.5) 0.454 (41.0) 0.769 (17.4) 

S9 0.620 (28.5) 0.630 (27.8) 0.560 (33.0) 0.611 (29.2) 0.481 (38.9) 0.500 (37.5) 0.722 (20.8) 

avg 0.581 (31.4) 0.519 (36.0) 0.499 (37.6) 0.550 (33.7) 0.527 (35.5) 0.477 (39.2) 0.648 (26.4) 

Fig. 4. Curve line of convergence process with MSMM. 
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Table 8 

Testing performance (precision) comparison of different classification algorithms 

on dataset IIa of BCI IV. 

Subject BSMM SMM MSVM LDA KNN MLP MSMM 

S1 0.804 0.787 0.803 0.772 0.795 0.706 0.822 

S2 0.542 0.460 0.659 0.537 0.563 0.505 0.571 

S3 0.827 0.827 0.837 0.803 0.833 0.735 0.884 

S4 0.643 0.664 0.679 0.646 0.632 0.629 0.701 

S5 0.629 0.515 0.549 0.588 0.577 0.590 0.653 

S6 0.514 0.431 0.411 0.505 0.519 0.372 0.600 

S7 0.893 0.856 0.754 0.785 0.789 0.804 0.893 

S8 0.802 0.797 0.768 0.799 0.763 0.603 0.833 

S9 0.777 0.729 0.743 0.771 0.680 0.649 0.805 

avg 0.715 0.674 0.689 0.690 0.684 0.621 0.751 

Table 9 

Testing performance (recall) comparison of different classification algorithms on 

dataset IIa of BCI IV. 

Subject BSMM SMM MSVM LDA KNN MLP MSMM 

S1 0.795 0.771 0.792 0.753 0.781 0.691 0.799 

S2 0.552 0.424 0.528 0.566 0.549 0.486 0.569 

S3 0.813 0.764 0.823 0.792 0.830 0.729 0.882 

S4 0.628 0.653 0.517 0.632 0.587 0.628 0.694 

S5 0.545 0.486 0.563 0.569 0.535 0.556 0.622 

S6 0.486 0.365 0.389 0.486 0.427 0.378 0.556 

S7 0.858 0.792 0.747 0.674 0.771 0.788 0.885 

S8 0.781 0.781 0.590 0.785 0.715 0.590 0.826 

S9 0.715 0.722 0.670 0.708 0.611 0.625 0.792 

avg 0.686 0.640 0.624 0.663 0.645 0.608 0.736 
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M  
er method [67] achieves relatively good performance for subject

1b and the 3rd winner also obtained best performance for sub-

ect k3b as ours, both of them employ quite complex preprocess-

ng techniques to extract the discriminative vector-form features.

he extracted features have lost the inherent structural informa-

ion, thus the first winner method obtained moderate performance

n subject k3b and method of 3rd winner have degraded perfor-

ance on subject l1b . In contrast, our method achieves the best

esults on the first dataset overall, i.e. , our method obtains better

esults than first winner method with a great 6.9% improvement in

he mean kappa value. 

Fig. 4 shows the convergence process of the proposed MSMM

n the subject k 3 b . It shows that our method based on ADMM

ramework can converge to the global optimum in a few iterations.

imilar trend also occurs for other subjects in both datasets. 

Results of the second dataset. The classifier comparison results of

he second dataset are reported in Table 7 . We can observe that

or most subjects, the BSMM and our MSMM achieve much bet-

er results than other methods, which may result from leveraging

he structure information embedded in the data of matrix form.

hough KNN is efficient, it ignores the structural information and

s very sensitive to the curse-of-dimensionality. MLP even obtains

he worst average results on both datasets. This is because MLP

s a universal approximator which makes the classifiers sensitive

o over-fitting problem, especially for the noisy and non-stationary

EG. Thus, it may fail in the real-world applications of EEG based
CIs [46] . In addition, our MSMM is the winning method, which

onsistently improves the kappa values across all the subjects for

he single trial EEG classification. This is because our method is

ble to avoid the bias of multiple binary classifiers with the multi-

lass formulation and leverage the structural information by learn-

ng the low rank regularization from the noisy EEG features. 

We also compute the measures of precision, recall and F 1 score

or different classification algorithms on the second dataset. The

esults are shown in Tables 8–10 . From Tables 8 and 10 , the pro-

osed method has the highest precision and F 1 score measures

cross all the subjects but S2 . While in Table 9 , we find that the

roposed MSMM achieves best performance across all the subjects

or recall evaluation. The high scores for all these measures indi-

ate that MSMM has high prediction quality. Therefore, it again

alidates the benefits of leveraging the structural information and

ulticlass hinge loss for the EEG classification problem. 

In Table 11 , we also summarize the performance comparison of

SMM with top three methods of the competition and the newly
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Table 10 

Testing performance ( F 1 score) comparison of different classification algorithms 

on dataset IIa of BCI IV. 

Subject BSMM SMM MSVM LDA KNN MLP MSMM 

S1 0.799 0.779 0.797 0.763 0.788 0.699 0.810 

S2 0.547 0.441 0.586 0.551 0.556 0.495 0.570 

S3 0.820 0.794 0.830 0.797 0.832 0.732 0.883 

S4 0.636 0.658 0.587 0.639 0.609 0.629 0.698 

S5 0.584 0.500 0.556 0.579 0.555 0.572 0.637 

S6 0.500 0.395 0.399 0.496 0.468 0.375 0.577 

S7 0.875 0.823 0.750 0.725 0.780 0.796 0.889 

S8 0.791 0.789 0.667 0.792 0.739 0.596 0.830 

S9 0.745 0.726 0.705 0.738 0.644 0.637 0.798 

avg 0.700 0.656 0.653 0.676 0.663 0.615 0.744 

Table 11 

Performance κ (error rate %) comparison of the proposed MSMM with the winners 

and a newly published method [18] of the dataset IIa of BCI IV. 

Subject 1st winner 2nd winner 3rd winner [18] MSMM 

S1 0.676 (24.3) 0.690 (23.3) 0.380 (46.5) 0.623 (28.5) 0.731 (20.1) 

S2 0.417 (43.8) 0.343 (49.3) 0.181 (61.5) 0.277 (54.2) 0.426 (43.1) 

S3 0.745 (19.1) 0.713 (21.5) 0.481 (38.9) 0.658 (25.7) 0.843 (11.8) 

S4 0.481 (38.9) 0.440 (42.0) 0.333 (50.0) 0.326 (50.7) 0.593 (30.6) 

S5 0.398 (45.1) 0.162 (62.8) 0.069 (69.8) 0.146 (63.9) 0.495 (37.8) 

S6 0.273 (54.5) 0.213 (59.0) 0.139 (64.6) 0.256 (55.9) 0.407 (44.4) 

S7 0.773 (17.0) 0.658 (25.7) 0.292 (53.1) 0.407 (44.4) 0.847 (11.5) 

S8 0.755 (18.4) 0.731 (20.1) 0.491 (38.2) 0.595 (30.6) 0.769 (17.4) 

S9 0.606 (25.9) 0.690 (23.3) 0.440 (42.0) 0.659 (25.7) 0.722 (20.8) 

avg 0.569 (32.3) 0.516 (36.5) 0.312 (51.7) 0.439 (42.0) 0.648 (26.4) 

Table 12 

p -values of Friedmans and Iman–Davenports test. 

Methods κ Precision Recall F 1 score 

Friedman 5.5998E −6 1.9699E −6 5.5998E −6 2.2359E −6 

Iman–Davenport 3.5868E −8 4.0424E −9 3.5868E −8 5.3155E −9 

Table 13 

Adjusted p -values of Holms method (MSMM is the control method). 

Methods κ Precision Recall F 1 score 

BSMM 0.0263 0.0841 0.0263 0.0756 

SMM 2.9053E −4 3.5577E −4 2.9053E −4 3.1561E −4 

MSVM 1.9368E −4 0.0037 1.9368E −4 5.2981E −4 

LDA 0.0022 4.3466E −4 0.0022 0.0015 

KNN 1.0988E −4 2.9053E −4 1.0988E −4 3.1561E −4 

MLP 1.7198E −6 4.5001E −7 1.7198E −6 5.9119E −7 

Table 14 

Average training and average testing time on both datasets be- 

tween different methods. 

Methods Dataset IIIa of BCI IIIa Dataset IIa of BCI IV 

#Train (s) #Test (s) #Train (s) #Test (s) 

BSMM 20.381 0.063 43.927 0.245 

SMM 18.995 0.059 47.198 0.243 

MSMM 22.257 0.054 65.528 0.230 
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published method [18] for the second dataset. The method of the

first winner achieves the top results in the competition, as it em-

ploys a complicated method to select discriminative features in

vector form for the final classification. Even though, our method

achieves the best results for all subjects, demonstrating the effec-

tiveness and robustness of the proposed MSMM. From Tables 7 and

11 , we can observe that all the methods including ours have fair

kappa values on subject S2, S5 and S6 . This may be because the

EEG signals in this dataset were collected in two separate ses-

sions and the non-stationarity problem is more obvious for these

three subjects. However, compared with the competing methods,

our method still obtains rather reasonable results for these cases. 
Statistical significance. We further use the hypothesis-testing

echniques to find the significant differences among the results ob-

ained by the proposed MSMM and other compared algorithms.

e use non-parameter tests because that the initial conditions

hat guarantee the reliability of the parametric tests may not be

atisfied, thus causing incredible statistical analysis with paramet-

ic tests. Specifically, we employ the Friedman test as well as the

man–Davenport test [68] to check whether there are significant

ifferences in the performance among the seven algorithms. If the

ull hypothesis is rejected, then we can conduct pairwise compar-

sons between the proposed MSMM (used as the control method)

nd other compared methods with the Holm method [69] as a post

oc test. A level of significance α = 0 . 05 is used in all the statisti-

al tests. 

We first calculate the p -values of the Friedman test and Iman–

avenport test on testing results of all 11 subjects with different

easures. Table 12 presents the p -values, which are highlighted

n boldface if the null hypothesis of equivalent performance is re-

ected. As is shown, the existence of significant differences among

he performances of all the algorithms is validated. 

Then we perform the Holm method to calculate the adjusted

 -values (APVs) for pairwise comparisons involving the MSMM as

he control method. We present he APVs in Table 13 and highlight

he APVs less than 0.05 in boldface. As is shown, it can be safely

oncluded that the proposed MSMM is statistically better than the

emaining methods regarding the measures of kappa and recall,

ith a significant level of 0.05. The null hypotheses of equivalent

erformance can also be rejected with a significant level of 0.1 for

he measures of precision and F 1 score. 

Time performance. We compare the average training and test-

ng time on both datasets between different methods. Since all

he vector-form classifiers (i.e., MSVM, LDA, KNN and MLP) would

ause out of memory problem without the PCA procedure, we only

ompare our method with BSMM and SMM due to the same size

f the input. The comparison of average training and testing time

etween these three methods is shown in Table 14 . It can be ob-

erved that our method has longer training time and shorter test-

ng time compared with the other two methods. For MSMM, it has

o need to break the multiclass problem into several binary ones

nd only train a unified classifier. In the training phase, MSMM

s required to train a more sophisticated classifier compared with

inary classifiers like BSMM and SMM. In the testing phase, our

ethod can be a little faster without considering the bias term

ompared with BSMM and SMM. The average testing time of our

SMM on these two datasets is 0.357 ms/trial and 0.798 ms/trial,

espectively, which is fast enough for most MI-based BCI

pplications. 

. Conclusion 

We present a novel classifier, namely MSMM, for the multiclass

lassification of EEG data with matrix form. In order to construct

he MSMM, we propose a novel objective function by combining

he square Frobenius norm of the tensor-form model parameter

nd nuclear norm of matrix-form hyperplanes extracted from the

odel parameter, and develop an efficient solver based on ADMM

ramework to solve the objective function. Compared with exist-

ng EEG signal classifiers, the proposed MSMM can leverage the

tructural information encoded in EEG matrices for more accurate

ulticlass classification, and hence improve the performance of BCI

ystems with multiple tasks. To our knowledge, we are not aware

f any previous classifier that can support multiclass classification

or EEG data in matrix form. We extensively evaluate the proposed

SMM on two benchmark multiclass EEG datasets. The MSMM has

ielded an average kappa value of 0.880 and 0.648 for dataset IIIa

f BCI III and dataset IIa of BCI IV, respectively, and achieved the
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[  
est results when compared with state-of-the-art or widely used

lassifiers for EEG data. Although the proposed method is applied

o MI-based EEG data, it is general enough to be used in other BCI

ystems involving multiclass matrix-form EEG signals. Further in-

estigations include assessing our method on more single trial EEG

atasets or advanced cross-subject EEG features, and integrating it

n BCI systems involving multiple tasks. 
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ppendix A 

1. Proof 

1) Proof of Theorem 1. The constraints in Eq. (4) are indepen-

ent from each other. For each constraint, the slack variable ξ i that

inimizes Eq. (4) should satisfy 

i = max 
ˆ y i ∈Y 

[�( ̂  y i , y i ) + 〈W, δΨ (X i , ̂  y i , y i ) 〉 ] . (A.1)

or optimization problem in Eq. (6) , the smallest variable ξ is 

= max 
( ̂ y 1 , ... , ̂ y n ) ∈Y n 

[ 
1 

n 

n ∑ 

i =1 

�( ̂  y i , y i ) + 

1 

n 

n ∑ 

i =1 

〈W, δΨ (X i , ̂  y i , y i ) 〉 ] . (A.2)

or a given W, each estimated label in a constraint ( ̂  y 1 , ̂  y 2 , . . . , ̂  y n )

s individually independent, ξ can be decomposed linearly in each

ˆ  i , (i ∈ 1 , . . . , n ) with 

= 

n ∑ 

i =1 

max 
ˆ y i ∈Y 

[ 
1 

n 

�( ̂  y i , y i ) + 

1 

n 

〈W, δΨ (X i , ̂  y i , y i ) 〉 ] 

= 

1 

n 

n ∑ 

i =1 

max 
ˆ y i ∈Y 

[�( ̂  y i , y i ) + 〈W, δΨ (X i , ̂  y i , y i ) 〉 ] 

= 

1 

n 

n ∑ 

i =1 

ξi . (A.3) 

ince both optimization problems have the same regularization,

heir objective values are equal given any W . This is also applicable

or optimal W 

∗ and the corresponding ξ and ξ i . �

2) Proof of Theorem 2. Since the optimal solution S ∗c of Eq.

12) satisfies 0 ∈ ∂L S (S ∗c ) , we only need to find one ˆ S c subject to

 ∈ 

ˆ S c + τ∂|| ̂ S c || ∗ + � + ρ( ̂ S c − W c ) . (A.4)

et U c �c V 

T 
c denote the singular value decomposition of an arbi-

rary matrix S c . It is known in [70,71] that the sub-gradient set of

he nuclear norm ∂|| ̂ S c || ∗ is 

|| ̂ S c || ∗ = { U c V 

T 
c + Z : Z ∈ R 

I 1 ×I 2 , U 

T 
c Z 

= 0 , ZV c = 0 , || Z || F < 1 } . (A.5) 

et Y denote (ρW c − �c ) and decompose it as Y = U 1 �1 V 

T 
1 

+
 2 �2 V 

T 
2 
, where U 1 and V 1 ( U 2 and V 2 ) are the singular vectors as-

ociated with singular values greater than τ (smaller than or equal

o τ ). If ˆ S c = 

U 1 ( �1 −τ I ) V T 
1 

1+ ρ , according to Eq. (A.4) , we have 

|| ̂ S c || ∗ = 

1 

τ
[ Y − (1 + ρ) ̂ S c ] 

= U 1 V 

T 
1 + 

1 

τ
U 2 �2 V 2 (A.6) 
et Z = 

1 
τ U 2 �2 V 2 , U c = U 1 and V c = V 1 , we have 0 ∈ ∂L S when

 

∗
c = ̂

 S c . �

3) Proof of Theorem 3. The most violated constraint resulting in

he largest ξ is 

∗ = max 
{ ̂ y 1 ... ̂ y n }∈Y n 

C 

n 

{ 
n ∑ 

i =1 

�( ̂  y i , y i ) 

+ 〈W, δΨ (X i , ̂  y i , y i ) 〉} (A.7) 

e have proved in Theorem 1 that the original problem satisfies
∗ = 

1 
n 

∑ n 
i =1 ξ

∗
i 

. Therefore, the most violated constraint ˆ y i can be

alculated as in Eq. (17) . �
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