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Modern technologies have been producing data with complex intrinsic structures, which can be naturally 

represented as two-dimensional matrices, such as gray digital images, and electroencephalography (EEG) 

signals. When processing these data for classification, traditional classifiers, such as support vector ma- 

chine (SVM) and logistic regression, have to reshape each input matrix into a feature vector, resulting 

in the loss of structural information. In contrast, modern classification methods such as support matrix 

machine capture these structures by regularizing the regression matrix to be low-rank. These methods 

assume that all entities within each input matrix can serve as the explanatory features for its label. How- 

ever, in real-world applications, many features are redundant and useless for certain classification tasks, 

thus it is important to perform feature selection to filter out redundant features for more interpretable 

modeling. In this paper, we tackle this issue, and propose a novel classification technique called Sparse 

Support Matrix Machine (SSMM), which is favored for taking both the intrinsic structure of each input 

matrix and feature selection into consideration simultaneously. The proposed SSMM is defined as a hinge 

loss for model fitting, with a new regularization on the regression matrix. Specifically, the new regular- 

ization term is a linear combination of nuclear norm and � 1 norm, to consider the low-rank property and 

sparse property respectively. The resulting optimization problem is convex, and motivates us to propose 

a novel and efficient generalized forward-backward algorithm for solving it. To evaluate the effectiveness 

of our method, we conduct comparative studies on the applications of both image and EEG data classifi- 

cation problems. Our approach achieves state-of-the-art performance consistently. It shows the promise 

of our SSMM method on real-world applications. 

© 2017 Elsevier Ltd. All rights reserved. 
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. Introduction 

Classification is an important research topic in the area of ma-

hine learning and pattern recognition, with wide range of empir-

cal applications [1] . Traditional classification approaches such as

upport vector machine (SVM) [2] and logistic regression [3] are

riginally designed for input samples represented as vectors or

calars. However, modern technologies and scientific applications

re frequently producing datasets where samples are naturally rep-

esented as two-dimensional matrices instead of vectors. Examples

nclude digital images, with quantized color values at a number

f pixels of rows and columns, and electroencephalogram (EEG)

ignals with voltage fluctuation at multiple channels over a pe-

iod of time [4] . When using classical classifiers on these matrix-
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orm data, we have to reshape them into vectors for preprocess-

ng, which would destroy the topological structural information

mbedded in each input matrix, e.g., the spatial relationship be-

ween nearby pixels for image data [5] , and the correlation be-

ween different channels for EEG data [6] . Moreover, when a ma-

rix is reshaped into a vector, its dimension can be extremely high,

esulting in the serious curse of dimensionality problem, especially

hen the sample size is limited. 

To tackle these issues, several works have been proposed to

lassify data in matrix form directly, and to explore the correla-

ion between columns and rows for each input matrix [7,8] . Wolf

t al. [5] proposed a rank- k SVM model, which assumed the regres-

ion matrix was a sum of k rank-one orthogonal matrices. Dyrholm

t al. [9] proposed a bilinear logistic regression model, decompos-

ng the regression matrix as a product of two rank- k matrices. Pir-

iavash et al. [10] further extended this model and proposed a bi-

inear classifier, by employing hinge loss for model fitting. These

ethods all take advantage of the low-rank assumption to exploit

he correlation between columns and rows among each matrix.
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Fig. 1. Two images of the same person from the Caltech Face dataset. 
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However, the rank of the regression matrix is difficult to be pre-

determined in these methods, resulting in tedious parameter tun-

ing procedures. To address this issue, Kobayashi and Otsu [11] de-

rived a novel bilinear SVM model by introducing nuclear norm to

determine the rank of regression matrix automatically. Luo et al.

[12] extended [11] and proposed a spectral elastic net regulariza-

tion, which combines both Frobenius norm and nuclear norm to

constrain the regression matrix. 

While all these works made good effort to take the correla-

tion between columns and rows of the regression matrix into con-

sideration under a low-rank assumption, and achieved satisfactory

performance, one of the limitations of these methods is that they

simply considered all the entities in each input matrix as explana-

tory factors, which is irrational in practical applications. In real-

world classification tasks, many features are redundant and use-

less for certain classification tasks, and only a small subset of them

are important to explain the label of each sample [13] . Let’s take

two images for face classification as an example to demonstrate

this. Fig. 1 shows two such images of the same person with dif-

ferent postures. Specifically, in Fig. 1 (b), the person put his fore-

arm on his forehead, which makes this image quite different from

Fig. 1 (a). However, these two images are still in the same category.

This indicates the features of posture cannot serve as explanatory

factors for the label of this image. Similar phenomena also occur

in other classification tasks as well. In a word, only a small sub-

set of features should be considered to make the classifier more

interpretable. Moreover, for applications like EEG data classifica-

tion, where the sample size is rather small, it could be benefi-

cial in model fitting to make the model simpler by only consid-

ering a small subset of useful features. Unfortunately, even though

the low-rank assumption used in previous matrix classification ap-

proaches can also somehow control the model complexity, it can-

not be used to perform feature selection to select these useful fea-

tures. Thus, it could be insufficient to only consider the low-rank

property when dealing with the matrix classification tasks. 

To tackle the issue of feature selection, some approaches have

been proposed to introduce the sparse property to the regression

matrix. Previous methods developed for sparse modeling mostly

rely on the use of � 1 -norm as a constraint [14] . This idea has

been applied to many traditional classification approaches for data

in vector form, including SVM [15] and logistic regression [16] , to

sparsify the coefficient vectors for better classification performance

with simpler and more interpretable model. However, this idea has

not been applied in the context of matrix classification. 

In this paper, we address the aforementioned issues by intro-

ducing the sparse property to the problem of matrix classification,

and propose a novel classifier called Sparse Support Matrix Ma-

chine (SSMM). In our SSMM, instead of just considering the corre-

lation of each input matrix as previous approaches did, we assume

the regression matrix is not only low-rank representable, but also

with the features of sparsity. Note that, even though both low-rank

and sparse properties can control the topological structural infor-

a  
ation of a matrix, they can actually be seen as two orthogonal

oncepts (consider a diagonal matrix, which has full rank but is

ighly sparse; or a matrix with row vectors being the same, which

s rank-1 but not sparse at all, see Fig. 2 as an example). More

pecifically, we study the sum of nuclear norm and � 1 -norm of

he regression matrix as the regularization term, to control its low-

ank and sparse properties respectively. We also employ the hinge

oss to maximize the margin between matrices belonging to differ-

nt classes for our SSMM method, due to its desirable capability of

parseness and robustness in modeling. In this way, our approach

s not only favored for the ability to classify data in matrix form

ithout loss of the structural information, but also able to perform

eature selection for better classification performance. 

The optimization problem for SSMM is convex, but the combi-

ation of hinge loss, � 1 -norm and nuclear norm makes the prob-

em nontrivial to be solved directly. To tackle this issue, we split

he problem into sub-problems with the Generalized Forward-

ackward (GFB) splitting approach [17] , and develop a novel and

ffective algorithm to solve the optimization problem efficiently.

o evaluate the effectiveness of our method, we apply the SSMM

o image classification and EEG data classification problems, where

amples of each dataset can be represented as matrices naturally.

omparing with state-of-the-art approaches, our SSMM method

chieves superior performance. It shows the effectiveness and the

trong empirical value of SSMM in real-world applications. 

The contributions of this paper can be summarized as follows: 

• We propose a novel classifier called SSMM for classifica-

tion problem involved explanatory features that are two-

dimensional matrices. Compared with existing classifiers,

the proposed method can simultaneously leverage the in-

herent structural information within matrix-form data and

select useful features, and hence improve the classification

performance. 
• We propose a novel objective function based on regularized risk

minimization framework by regularizing the combination of

nuclear norm and � 1 norm of the regression matrix, and de-

velop an efficient solver based on GFB splitting framework

to solve it. We also provide a theoretical guarantee for the

global convergence and analyze the excess risk statistically. 
• We extensively evaluate the proposed SSMM on four real

datasets. The results show that SSMM achieves state-of-the-

art generalization performance in image classification and

single-trial EEG classification tasks. 

. Notations 

In this section we introduce notations and preliminaries that

ill be used later in this work. Following standard conventions,

e represent scalar values by lowercase letters (e.g. x ), vec-

ors by bold lowercase letters (e.g. x ), and matrices by bold

ppercase letters (e.g. X ). For a matrix X ∈ R 

m ×d , there exists

 singular value decomposition (SVD) of the form X = U�V 

T ,
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Fig. 2. Three matrices with special structures: (a) sparse; (b) low rank; (c) simultaneous sparse and low rank. Various colors denote different numerical values and white 

color represents zero. 
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here U ∈ R 

m ×r and V ∈ R 

d×r are both unitary matrix, and � =
iag(σ1 , σ2 , · · · , σr ) , in which the diagonal entities are singular

alues satisfying σ 1 ≥σ 2 ≥ ��� ≥σ r ≥ 0. Here, the number of non-

egative singular values r denotes the rank of X and r ≤ min ( m, d ).

Also, we set || X || ∗ = 

∑ r 
i =1 σi to represent the nuclear norm of a

atrix X , and || X || 1 = 

∑ 

i, j | x i, j | as the � 1 norm. 

We further introduce the singular value thresholding operator,

hich will be used later in this paper to derive the solver of SSMM

odel. 

efinition 1. For any τ ≥ 0, the singular value thresholding opera-

or is well defined as follows: 

 τ (X ) := U S τ+ (�) V 

T , (1)

here S τ+ (�) = diag({ σi − τ } + ) and {·} + = max (0 , ·) . 

This operator D τ shrinks the singular values of X with a soft-

hresholding rule. In the literature [18,19] , such a transformation is

lso called singular value shrinkage operator, which is widely used

or low-rank matrix completion [18] . 

. Problem formulation and related works 

In principle, the proposed SSMM is a regularized binary matrix

lassifier, which can not only take correlation of columns and rows

n each matrix into consideration, but also perform feature selec-

ion to remove redundant features for more interpretable model-

ng. In order to facilitate description, we first formulate the matrix

lassification problem as follows. 

Given a set of training samples { X i , y i } n i =1 
, X i ∈ R 

m ×d is the i th 
nput matrix and y i ∈ { 1 , −1 } is its corresponding true label. We

im to train a function f : R 

m ×d → R with the given data, which

an successfully identify the category of a newly arrived data. 

To tackle the classification issue with classical vector-based ap-

roaches, a heuristic method is to stack a matrix-form data X i 

nto a vector first, and then train a classification model with the

et of vectorized data. One of these classical classifiers is the soft

arginal SVM model [20] ; it can be trained by optimizing the fol-

owing energy function: 

in 

w ,b 

1 

2 

w 

T w + C 

n ∑ 

i =1 

{ 1 − y i (w 

T x i + b) } + , (2)

here x i = v ec(X i ) represents the vectorized data of matrix X i ,

 1 − u } + = max (0 , 1 − u ) denotes the hinge loss function to max-

mize the margin between vectorized data points of different cate-

ories, w ∈ R 

md is the regression parameter, b ∈ R is an offset term,

nd C ∈ R denotes a penalty parameter. 
From the viewpoint of computation, Eq. (2) is equivalent to the

ollowing formulation, to perform matrix classification directly: 

in 

W ,b 

1 

2 

tr(W 

T W ) + C 

n ∑ 

i =1 

{ 1 − y i [ tr(W 

T X i ) + b] } + . (3)

ince tr(W 

T W ) = v ec(W ) T v ec(W ) and tr(W 

T X i ) = v ec(W ) T 

 ec(X i ) , it indicates directly performing classification with

q. (3) cannot capture the intrinsic structure of each input

atrix effectively. In a word, even though the reshaping oper-

tions to transform matrices into vectors can be efficient, the

tructural information within each matrix could be destroyed,

esulting in the loss of information. Thus, it is of research interest

n how to preserve and take full advantage of intrinsic structural

nformation within each matrix, such as the correlation between

ows and columns, when training classifiers for matrix-form data.

ith the structural information into consideration, it is expected

hat the classification performance can be improved. 

To take the structural information into consideration, one intu-

tive way is to capture the correlation within each matrix by im-

osing a low-rank constraint on W . Several approaches have been

roposed to tackle this problem in this way, including the low-

ank SVM [5] and bilinear SVM [10] . However, these methods re-

uire the latent rank of W to be pre-specified manually for differ-

nt applications. Kobayashi and Otsu [11] addressed this issue by

ntroducing the variational form of nuclear norm [21] by decom-

osing W = W p W q to determine the rank automatically, but the

esulting objective function is non-convex, which affects the ro-

ustness of this algorithm due to the existence of local optima. In

rder to solve this problem, Luo et al. [12] proposed a novel model

alled support matrix machine (SMM), with the optimization prob-

em formulated as follows: 

arg min 

W ,b 

1 

2 

tr(W 

T W ) + τ || W || ∗ + C 

n ∑ 

i =1 

{ 1 − y i [ tr(W 

T X i ) + b] } + . 

(4) 

ere, 1 
2 tr(W 

T W ) + τ || W || ∗ is called spectral elastic net regulariza-

ion, which is employed to capture the correlation within each ma-

rix. Note that, the nuclear norm || W || ∗ is used as a regularization

erm to control the rank for W because determining the rank of a

atrix can be NP-hard [22] while the nuclear norm is known as

he best convex approximation of the rank of W [6,19] . 

The SMM method is capable of capturing the latent structure

ithin each matrix effectively. However, one of the main short-

omings of this model is that it performs classification based on

ll the entities of each matrix, which not only makes the model

omplicated but also imperils the classification performance be-

ause a lot of redundant and useless information is involved in the

lassification procedure. To tackle this issue, an intuitive thought

s to employ a feature selection mechanism which takes only a
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subset of entities that encode representative features of a matrix

to improve the classification performance. While taking full advan-

tage of structural information of a matrix and meanwhile integrat-

ing a feature selection mechanism may derive more interpretable

and representative features for better classification performance of

matrix-form data, to our knowledge, we are not aware of any pre-

vious matrix-form classifier that simultaneously and elegantly har-

nesses these two important properties. In this regard, we develop

the proposed SSMM, aiming at leveraging both low-rank property

and sparsity property of the regression matrix to simultaneously

achieve the preservation of structural information and the selec-

tion of representative features for better classification of matrix-

form data. 

4. The proposed SSMM 

In this section, we introduce the proposed SSMM, which is, in

principle, a novel matrix classifier that simultaneously considers

the correlation information encoded in the input matrices and se-

lects more representative features by removing redundant informa-

tion using sparsity property. A novel and efficient algorithm based

on GFB splitting framework is further derived to solve the SSMM. 

4.1. Sparse Support Matrix Machine 

4.1.1. The model 

It is well known that hinge loss provides a tight and convex

upper bound on the 0/1 indicator function. With the large margin

principal, it is favored for its robustness and sparseness in predic-

tion performance of binary classification problems. In this regard,

we adopt the hinge loss function in our SSMM. In order to simulta-

neously preserve structural information and extract discriminative

features, we impose both low-rank and sparse constraints on the

regression matrix W . In particular, we present the objective func-

tion of our SSMM method as: 

arg min 

W ,b 

γ || W || 1 + τ || W || ∗ + 

n ∑ 

i =1 

{ 1 − y i [ tr(W 

T X i ) + b] } + , (5)

with X i , W ∈ R 

m ×d . This formulation incorporates the hinge loss

and constraints on regression matrix W for matrix classification.

The regularization term on W is a linear combination of � 1 norm

|| W || 1 to control the sparseness and nuclear norm || W || ∗ to cap-

ture the correlation within each input matrix. Specifically, the � 1 
norm encourages W to be sparse by serving as a convex surro-

gate for the number of nonzero entries in W . Meanwhile, the nu-

clear norm, which is a convex approximation for rank of a matrix,

encourages W to be low-rank. Since tr(W 

T X i ) = v ec(W ) T v ec(X i ) ,

when W is constrained to be sparse, we can implicitly perform fea-

ture selection for the input matrix by enforcing the coefficients of

useless features to be 0. Thus, by setting τ = 0 , our model degen-

erates to the sparse SVM [15] if we stack the feature matrices into

vector form. The combination of these two constraints yields a de-

sirable regression matrix which is simultaneously sparse and low-

rank, and thus is capable of well capturing the intrinsic structure

of each input matrix and effectively selecting explanatory features

for more interpretable modeling. 

4.1.2. Remarks on the SSMM 

The proposed SSMM is the first matrix-form classifier to simul-

taneously select the discriminative features and make full use of

the inherent structrual information within the input matrices. This

benefits from the novel regularization which is a combination of

� 1 norm and nuclear norm on the regression matrix W . 

Though the combination of these two norms has been stud-

ied in machine learning areas, especially for the matrix recovery
roblem, the existing works are different from ours in terms of

otivation or formulation. Among these methods, one stream as-

umes that the original input matrix can be decomposed as the

ummation of two different matrices, one is low-rank and the

ther is sparse. One pioneering work is the robust principle com-

onent analysis (RPCA) [23] , which recovered the low-rank matrix

ontaminated by additive sparse outliers. Gu et al. [24] extended

he RPCA model with more general factorization and proposed a

onconvex optimization algorithm for large scale problems. Both

25] and [26] further recovered the input matrix from the com-

ination of a low rank component and a sparse one with com-

ressive measurements. Inspired by RPCA, Guan et al. proposed a

ahNMF model [27] which robustly estimated the low-rank com-

onent and the sparse component of the non-negative matrix. It

odeled the heavy-tailed Laplacian noise by minimizing the Man-

attan distance between a non-negative matrix and the product of

wo non-negative low-rank factor matrices. The works [28,29] fur-

her studied the statistical performance of the MahNMF in the

iewpoint of the statistical learning theory. Different from the pro-

osed SSMM, all these works decompose the estimated matrix to

e a linear combination of a low-rank matrix L and a sparse matrix

 , while SSMM regularizes the model parameter W to be simulta-

eously sparse and low-rank. 

In the other stream, a few of studies estimate a matrix to be si-

ultaneously sparse and low-rank. Most of them are on the matrix

ompletion problem [30–32] with the smooth fidelity loss term.

or example, Parekh et al. [32] estimated the sparse and low-rank

atrix from the noisy obervations with the smooth Frobenius loss

erm. In addition, all these works are unsupervised and have been

pplied to applications like link prediction [33] but not yet in the

lassification task. Therefore, these approaches are inherently dif-

erent from the proposed SSMM, which is a matrix-based classi-

cation method with the non-smooth hinge loss to estimate the

onstrained regression matrix. 

To our best knowledge, the only matrix classification approach

hat has considered the sparsity property is the work [34] , which

as based on the bilinear logistic regression approach [9] with the

ssumption that the rank of regression matrix W is known. It fur-

her assumed that W = W a W b , and enforced both W a and W b to

e sparse by incorporating � 1 norm as constraints. However, the

esulting optimization is biconvex with respect to W a and W b , it

ay get stuck in local minima. In addition, since the product of

wo sparse matrices is not guaranteed to be sparse, this method

34] cannot perform feature selection for matrix classification, re-

ulting in a significant difference from the SSMM. 

.2. Learning algorithm 

We currently present an efficient algorithm to solve the opti-

ization problem of SSMM proposed in Eq. (5) . Consider the hinge

oss, � 1 norm and nuclear norm in Eq. (5) are all non-smooth but

onvex, which is difficult to be solved together, it is intuitive to

plit the objective function into a sum of sub-problems which can

e solved more easily. 

rg min 

W ,b 

F = arg min 

W ,b 

h (W , b) + 

2 ∑ 

k =1 

f k (W ) , (6)

ith h = 

∑ n 
i =1 { 1 − y i [ tr(W 

T X i ) + b] } + , f 1 = τ || W || ∗ and

f 2 = γ || W || 1 . 
F is a sum of three lower semicontinuous and convex functions

ith respect to W and b in a real Hilbert space H. Thus, there ex-

sts at least an optimal value of F and the set of minimizers of F
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Fig. 3. Shown are the (a) loss values and (b) gradients of loss functions for hinge loss and generalized smooth hinge loss with different smooth parameters α. 
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1 The detailed implementation of the proximal operators can refer to supplemen- 
erifies 

 ∈ ∂h + 

2 ∑ 

k =1 

∂ f k , (7)

here ∂ denotes the subdifferential operator. 

However, each term involved in SSMM is non-smooth and non-

ifferentiable, the conventional proximal algorithms cannot be ap-

lied to this problem directly. The Nesterov method in [6] requires

he loss function h has a Lipschitz-continuous gradient and can

nly handle one convex non-negative constraint. Traditional split-

ing algorithms like the alternating direction method of multipli-

rs (ADMM) [35] are inherently built for optimization problems

ith at most two separable convex non-differentiable terms. In

ddition, the direct extensions of ADMM for optimization prob-

ems with multiple convex terms do not necessarily converge for

ertain problems [36] . While the GFB splitting [17] also requires

he gradient of h to be Lipschitz-continuous, it can tackle arbitrary

 > 0 convex non-differentiable terms with simple proximal opera-

ors. In this regard, we are motivated to develop an efficient solver

ased on the GFB splitting framework. To pursue a loss function

ith Lipschitz-continuous gradient, we first smooth the loss func-

ion h by approximating it with a generalized smooth hinge loss

 α [37] with 

n ∑ 

i =1 

h α(z i ) = 

{ α
α+1 

− z i , if z i ≤ 0 , 
1 

α+1 
(z i ) 

α+1 + 

α
α+1 

− z i , if 0 < z i < 1 , 

0 , if z i ≥ 1 , 

(8) 

here z i = y i [ tr(W 

T X i ) + b] . As shown in Fig. 3 (a), h α( z i ) is zero for

 i ≥ 1 and has a constant negative slope for z i ≤ 0. When 0 < z i < 1,

 α has smooth transition with slope between ( −1,0). In this re-

ard, h α not only shares similarities to hinge loss, such as sparisity,

ut also benefits from the differentiability. Then the gradient of h α
ith respect to W can be easily computed by the chain rule with 

 W 

h α = 

dh α

dz 

∂z 

∂W 

= 

n ∑ 

i =1 

{ −y i X i , if z i ≤ 0 , 

(z α
i 

− 1) y i X i if 0 < z i < 1 , 

0 , if z i ≥ 1 . 

(9) 

ote that the gradients of hinge loss and the smooth ones are only

ifferent between the interval of (0, 1), as shown in Fig. 3 (b). 

With the approximated gradient of h , the GFB learning proce-

ure can be implemented in an iterative manner. In each iteration,

t individually evaluates the resolvent of ∂ f k (denoted as J ∂ f k 
) at

arious points of H, and determines the regression matrix W by

he linear combination of the resolvents J ∂ f . 

k 

t

To tackle J ∂ f k 
, we introduce two auxiliary variables Z 1 and Z 2 ,

orresponding to regularizer f 1 and f 2 respectively. The update of

uxiliary variables Z k is 

 k,t+1 = Z k,t + λt (J θ
ω k 

∂ f k 
(2 W t − Z k,t − θ∇ W 

h α) − W t ) , (10)

here t ∈ N , θ > 0 denotes the step size, ω k ∈ [0 , 1] ( 
∑ 

ω k = 1) de-

otes the weight of Z k , λt denotes the relaxation parameter and

 θ
ω k 

∂ f k 
denotes the resolvent of θ

ω k 
∂ f k . The resolvent of the max-

mal monotone operator ∂ f k is equivalent to the proximal opera-

or prox f k [38] , and all such resolvent operators are firmly non-

xpensive computationally. 

Within each iteration, the resulting auxiliary variables { Z 1 , Z 2 }

an be projected to the regression matrix W by linear combination

ith 

 t+1 = 

∑ 

k 

ω k Z k,t+1 , (11)

Once W gets updated, bias b can be easily calculated by the

radient descent algorithm with 

 t+1 = b t − θ∇ b h α (12)

In summary, the proposed learning algorithm for our SSMM is

emonstrated in Algorithm 1 1 . 

Algorithm 1: Generalized forward-backward algorithm for 

SSMM. 

Input : Training data { (X i , y i ) } n i =1 
, sparsity coefficient γ and 

low-rank coefficient τ , weights ω 1 , ω 2 , smooth 

parameter α
Output : W , b 

1 Initialize W , Z 1 , Z 2 = 0 

2 repeat 

3 Compute G ← ∇ W 

h α with Eq. (9) 

4 Z 1 ← Z 1 + λt (prox θ
ω 1 

γ ||·|| 1 (2 W − Z 1 − θG ) − W ) 

5 Z 2 ← Z 2 + λt (prox θ
ω 2 

τ ||·|| ∗ (2 W − Z 2 − θG ) − W ) 

6 W ← 

∑ 2 
k =1 ω k Z k 

7 b ← b − θ∇ b h α

8 until Convergence ; 

9 return W , b 
ary. 
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To state the robustness of Algorithm 1, we further derive

Theorem 1 to ensure its convergence. 

Theorem 1. Let ε1, t be the error at t th iteration when computing

∇ W 

h α , let ε2, k, t be the error at t th iteration when computing J θ
ω k 

∂ f k 
.

If 

1. ∇h α + 

∑ 2 
k =1 ∂ f k 	 = ∅ , 

2. (λt ) t∈ N ∈ [0 , 2] and 
∑ 

t∈ N λt (2 − λt ) = + ∞ , 

3. 
∑ + ∞ 

t=0 || ε1 ,t || < + ∞ and 
∑ + ∞ 

t=0 || ε2 ,k,t || < + ∞ 

are satisfied, then the sequences of (W t ) t∈ N in Eq. (11) converges

weakly towards a solution of Eq. (6) . Moreover, if ∀ t ∈ N , λt ≤ 1 , then

(W t ) t∈ N converges strongly to the unique minimizer of Eq. (6) . 

The proof is similar to [17] and interested readers can refer to

Section 4 in [17] . 

4.2.1. Computational cost 

We also analyze the time complexity of Algorithm 1 . The main

time cost of our solver ( Algorithm 1 ) is to calculate the gradient

of the smoothed hinge loss with respect to ( W , b ) (line 3 and line

7 in Algorithm 1 ). Given n training samples, it calculates n dot-

products and each dot-product takes time O ( md ), where m and d

are the number of rows and columns of the matrices. Line 4 is the

eigen decomposition, which takes O (min (m 

2 d , md 2 )) . Line 5 and

line 6 take O ( md ) to update Z 2 and W , respectively. In this regard,

the time complexity of Algorithm 1 is O ( nmd ) × K , where K is the

iteration number. As a comparison, the SVM models implemented

with LIBSVM library have time complexity scales between O ( n 2 )

and O ( n 3 ) [39] . The computational cost of each iteration in SMM

model is dominated by the quadratic programming with respect to

W , which takes O ( n 2 md ) time complexity. Therefore, our method

is much faster than SMM owing to the computational simplicity in

each iteration. 

4.3. Theoretical risk analysis 

In this section, we theoretically analyze the excess risk of our

SSMM for regularization with the combination of nuclear norm

and � 1 norm. In our theoretical analysis, we assume each entity

within an input matrix independently obeys the standard Gaussian

distribution following the setting in [40,41] . 

Given the optimization problem of SSMM defined in Eq. (5) , we

can simply rewrite it as follows: 

arg min 

W ,b 

n ∑ 

i =1 

h (W , b, X i , y i ) , 

s.t. || W || 1 ≤ c 0 , || W || ∗ ≤ c 1 , 

(13)

for certain constants c 0 and c 1 , with h (W , b, X i , y i ) = { 1 −
y i [ tr(W 

T X i ) + b] } + as the loss term for each input matrix with pa-

rameters W and b . With the Karush–Kuhn–Tuck (KKT) conditions

y i { tr[ W 

T X i ] + b} − 1 = 0 , i ∈ { 1 , · · · , n } , (14)

the loss function can be further simplified as 

ˆ h (W , ̂  X i , y i ) = 

{ 

1 − y i 

[ 

tr(W 

T ˆ X i ) + 

1 

n 

n ∑ 

j=1 

y j 

] } 

+ 

, (15)

which is L -Lipschitz continuous, with 

ˆ X i = X i −
1 

n 

∑ n 
j=1 X j , as X i 

minus the empirical mean of all given data matrices, which tends

to be 0 when n is large. As a result, entities of ˆ X i are i.i.d zero

mean standard normal distributed [42] . 
Following [41] , the standard form of empirical risk without the

ias term for loss function in Eq. (13) can be formulated as 

˜ 
 (W ) = 

1 

n 

n ∑ 

i =1 

ˆ h (W , ̂  X i , y i ) , (16)

nd the expected risk is defined as 

 (W ) = E (X ,y ) ∼μ
ˆ h (W , ̂  X i , y i ) , (17)

ith μ as the probability distribution that the data points are sam-

led. Here, we set W 

o as the optimal solution of the following

roblem to minimize the expected risk with 

 

o = arg min 

W 

R (W ) , s.t. || W || 1 ≤ c 0 , || W || ∗ ≤ c 1 , (18)

nd 

˜ W as the optimal solution to minimize the empirical risk as

ollows 

˜ 
 = arg min 

W 

˜ R (W ) , s.t. || W || 1 ≤ c 0 , || W || ∗ ≤ c 1 . (19)

In the following theorem, we provide an upper bound of the

xcess risk of the SSMM method, and its proof can be found in the

upplementary material. 

heorem 2. For any δ ∈ (0, 1), with probability at least 1 − δ, the

xcess risk of SSMM classifier, for W 

o with rank r, is bounded as 

 ( ˜ W ) − R (W 

o ) ≤
2 L max 

(
1 

r 
√ 

d 
c 0 , c 1 

)
√ 

n 

· ( √ 

m + 

√ 

d ) + 

√ 

ln ( 1 
δ
) 

2 n 

. 

(20)

. Experimental results 

We conduct extensive experiments to evaluate our method on

wo important empirical applications - image classification and

ingle trial EEG classification, in which the data are naturally repre-

ented as matrices. In order to compare the performance of vector-

ased classifiers and matrix-based classifiers, we set two vector-

ased classifiers, i.e., SVM [20] and sparse SVM (SSVM) [15] , as the

aseline methods. 

We further compare our SSMM with several state-of-the-art

atrix classifiers, including regularized GLM (RGLM) [6] , bilinear

VM (BSVM) [11] and SMM [12] . 

.1. Experiment settings 

We first introduce the settings of our experiments. 

The smooth parameter is set as α = 3 to trade off the smooth-

ess and computational complexity. Following the settings in [30] ,

e set the weights ω k to be 1 
2 and the relaxation parameters λt to

e constant along iterations and equal to 1. 

There are still two free parameters γ and τ involved to control

he trade-off between the regularization terms and the hinge loss.

etails on the selection of these two parameters will be discussed

ater in this section. For the sake of fair comparison, the free pa-

ameters of all competitive methods are carefully tuned in order to

btain their best classification results. For vector-based classifiers,

.e., SVM and SSVM, we reshape each input matrix into a feature

ector for model training. 

.2. Image classification 

We first test our approach with the competitive ones in the ap-

lication of image classification, which is a fundamental tool to an-

lyze and understand images in the area of computer vision [43] .

upervised learning approaches to image classification can extract
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Fig. 4. Some sample images from INRIA Person dataset. The first row displays images with people and the second row shows people-free ones. The backgrounds of the 

human images are similar to people-free images, which makes the task of human detection challenging. 

Table 1 

Summary of four datasets. 

Datasets Dimension Train(#pos/#neg) Test(#pos/#neg) 

INRIA 160 × 96 2416/1218 1126/453 

Caltch 320 × 280 147/71 131/86 

BCI IV 2a 240 × 150 72 × 9/72 × 9 72 × 9/72 × 9 

BCI IV 2b 150 × 24 200 × 9/200 × 9 160 × 9/160 × 9 

Table 2 

Classification accuracy on INRIA Person Dataset with different features. 

INRIA SVM RGLM SSVM BSVM SMM Ours 

Gray 0.8442 0.8581 0.8771 0.8619 0.8626 0.8866 

LBP 0.9791 0.9848 0.9816 0.9835 0.9823 0.9861 
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he spectral signatures from the training samples in order to label

ewly captured images. 

To test the effectiveness of SSMM in this application, we apply

ll methods on two real-world datasets: the INRIA Person [44] and

he Caltech Front Face [45] . The summary information for these

wo datasets is shown in Table 1 . It can be observed that, when

tacking the input matrices into vectors, the dimension of each

ample is much higher than the number of images within the

raining sets, which makes the problem much more difficult. We

mploy the classification accuracy to evaluate the performance of

ach method; higher value indicates that the performance is better.

.2.1. INRIA person dataset 

The INRIA Person Dataset 2 was proposed to detect whether or

ot people exist in an image, which can be easily interpreted as an

mage classification problem. It contains 2416 images with people

nd 1218 people-free ones for training, and 1126 images with peo-

le and 453 people-free samples for testing. Some sample images

re displayed in Fig. 4 . This task is challenging because the back-

rounds are similar across all samples and the distribution of hu-

an is arbitrary and without any alignment. To extract the matrix-

orm data, we convert each color image into a 160 × 96 gray level

ne and use the pixel values as an input matrix without any ad-

anced feature extraction techniques. The performance of all ap-

roaches on the testing set is shown in Table 2 . It can be observed

hat all matrix classification methods can beat the SVM approach,

hich indicates that leveraging the correlation of each image data

s meaningful empirically. Also, the SSVM method can beat the tra-

itional SVM, which shows that performing feature selection is im-

ortant to filter out redundant features. It is also clear that our

SMM method achieves superior performance over all competitive

nes with a significant margin. Fig. 5 further demonstrates several

mages that has been misclassified by other classifiers, but only
2 http://pascal.inrialpes.fr/data/human/ . 
lassified accurately by our SSMM method. These results demon-

trated that addressing both the correlation and feature selection

ssues with low-rank and sparse constraints on the regression ma-

rix is effective on this application. 

We also compare the proposed method with others using

atrix-form features by the Local Binary Patterns (LBP) [46] , an

fficient local descriptor to capture fine details of human appear-

nce and texture. In this paper, we follow the same steps as in

47] to extract the LBP for each training and testing sample. Each

60 × 96 image is first divided into 10 × 6 subregions, per

ize 16 × 16 pixels. Within each subregion, the histogram of 59

niform binary patterns is computed by thresholding 8 neighbor-

ng pixels in a circle of radius 2. Thereby, the feature matrix is

ormed as feature-vs-space with X i ∈ R 

59 ×60 . The recognition ac-

uracy rates of different compared methods are also reported in

able 2 . As is expected, all classifiers benefit from using LBP fea-

ures, which is more robust to variations in illumination and other

hanges, and thus obtain a large scale of improvement. In addi-

ion, all useless features can not be completely eliminated by the

dvanced feature extraction technique, thus the proposed method

till achieves the best performance benefiting from leveraging the

orrelation within data and selecting important features. 

Fig. 6 shows the convergence process of SSMM on this dataset.

t verifies that our method converges fast to the global optimal

alue in hundreds of iterations. Similar phenomena also occur

hen using SSMM in other datasets. It shows the efficiency of our

ethod to train the SSMM classifier for real-world applications.

n addition, in the testing phase, all methods are quite fast. Most

ethods, including our SSMM, take less than 0.001 second to clas-

ify an input sample. It fulfills the requirement of most applica-

ions. Fig. 7 

.2.2. Caltech face dataset 

We further test the performance of different methods on the

altech Face Dataset 3 , which is used for gender recognition. It con-

ains 435 images of size 592 × 896 on human face with vari-

us expressions under different illumination conditions and back-

rounds. Some sample images are displayed in Fig. 7 . In this

ataset, it can be observed that all images share similar features

n terms of human face outlines, and the difference of genders lies

nly in small details such as hair and eyes. In addition, to distin-

uish the gender of a human in each image, most of the pixels

elated to background are useless. Thus, it would be important to

ake feature selection into consideration when training a classifier. 

Similar to [45] , we also randomly select 147 male and 71 fe-

ale images as training set, and set the rest 131 male and 86 fe-

ale images as testing set. We first detect the faces by Viola–Jones

ace detector, which efficiently outputs a bounding box indicating
3 http://www.vision.caltech.edu/Image _ Datasets/faces/ . 

http://pascal.inrialpes.fr/data/human/
http://www.vision.caltech.edu/Image_Datasets/faces/
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Fig. 5. Some cases have right results only with SSMM. 

Fig. 6. Convergence process for SSMM. 

Table 3 

Classification performance on Caltech Face Dataset with different features. 

Caltech SVM RGLM SSVM BSVM SMM Ours 

Gray 0.9539 0.9770 0.9677 0.9862 0.9816 0.9908 

LBP 0.9816 0.9908 0.9862 0.9908 0.9954 0.9954 
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the predicted face 4 . Similar to INRIA Person, we resize each face

within the bounding box to size 320 × 280 and extract the gray

pixel values as the input matrix-form features. The prediction re-

sults are shown in Table 3 . It can be seen that the proposed SSMM

achieves superior performance compared with other state-of-the-

art classifiers. This is because the changing illumination or back-

grounds have low-rank property, while the discriminant face fea-
4 We use the OpenCV implementation of the Viola–Jones’s face detector. Since 

there is only one face in each image, we reduce the false alarms by reducing the 

maximum of search scale iterations. The detector missed only 8 faces out of all 

435 images in our experiment, and we have manually labeled these eight bounding 

boxes. 

t  

f  

c  

t  

r  

m  

Fig. 7. Some sample images from Caltech Face dataset. The first row shows female fac

different face appearance, expressions, lighting conditions, and backgrounds within each c
ures exist sparse structures. In this case, neither sparse model

 e.g ., SSVM) nor low-rank model ( e.g ., BSVM and SMM) is suf-

cient to capture the underlying structure entirely. Moreover, it

lso indicates that our method is robust to different disturbances

ike lighting, expressions and backgrounds. Because the dimension

320 × 280 = 89,600) in this dataset is much larger than the

ample size (435), SVM-like matrix classifiers (e.g., BSVM, SMM,

SMM) with hinge loss are more robust for high dimensional data

nd have better generalization performance than RGLM. It should

e noted that the proposed classifier can also reduce the computa-

ional cost in the testing phase because the regression matrix has

ess elements due to the sparse and low-rank structure. The num-

er of iterations of SSMM on this dataset is 88. 

We further compare the performance of different methods us-

ng the LBP features. Each 320 × 280 cropped and resized face

egion is first divided into a regular 10 × 10 grid of cells, per

ize 32 × 28 pixels. Following the same steps in Section 5.2.1 ,

ach feature matrix embedding feature-space correlationship is ex-

racted as X i ∈ R 

59 ×100 . As is shown in Table 3 , all classifiers ben-

fit from using efficient LBP features and all matrix classifiers

utperform the vector ones consistently. In addition, our method

SMM achieves the same competitive performance as SMM does. 

.3. Single trial EEG classification 

To further evaluate our method, we apply our approach to the

pplication of EEG data classification, which can benefit modern

EG-based Brain-Computer Interface (BCI) as a potential communi-

ation system without any requirement of peripheral muscular ac-

ivity [4 8,4 9] . The BCI can extract and recognize the brain signals,

nd perform certain activities accordingly. This procedure highly

elies on the classification of EEG data, to recognize different brain

ctivity patterns [50] . The EEG signals can be intuitively repre-

ented as two-dimensional matrices, with high correlation among

he rows and columns within each sample, which could be ef-

ectively captured by the matrix classification methods. The main

hallenge is that the sample size is rather small comparing with

he sample dimensionality in EEG data, while there always exist

edundant features within each input matrix [6] . To evaluate our

ethod on this application, we conduct comparative experiments
es and the second one shows male faces. The dataset is of high difficulty due to 

lass of images. 
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Fig. 8. Classification performance on Dataset 2b of BCI Competition IV. 
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Table 4 

Classification performance for Dataset 2a of BCI Competition IV. 

Dataset SVM RGLM SSVM BSVM SMM Ours 

L-vs-R 0.8048 0.8225 0.8187 0.8140 0.8102 0.8318 

L-vs-F 0.8711 0.8892 0.8866 0.8812 0.8781 0.8989 

L-vs-T 0.8588 0.8773 0.8650 0.8812 0.8742 0.8951 

R-vs-F 0.8773 0.8696 0.8897 0.8873 0.8843 0.9020 

R-vs-T 0.8688 0.8618 0.8704 0.8804 0.8773 0.8974 

F-vs-T 0.8009 0.8130 0.8003 0.8133 0.8094 0.8356 

(  

T  

t  

T  

t  

l  

fi  

g  

T  

i  
n the Dataset 2a and 2b [51] of BCI Competition IV. The summary

f these two datasets is listed in Table 1 . It can been seen that, for

oth datasets, if each data matrix is stacked into a feature vector,

he dimension of each data can highly exceed the available sam-

le size in the training set, resulting in a challenging classification

roblem. 

.3.1. Dataset 2a of BCI Competition IV 

We first evaluate each method on the Dataset 2a of BCI Compe-

ition IV 

5 , which records single-trial EEG brain waves from nine

ealthy subjects performing four motor imagery tasks, namely,

eft-hand (L), right-hand (R), feet (F) and tongue (T). It comprises

f training and testing data in two sessions conducted on different

ays. There are 72 trials per motor imagery task and 288 trials in

otal per session for each subject. This dataset can be used to train

lassifiers to recognize the true label of a newly captured motor

magery trial. 

In this experiment, we use the following preprocessing and fea-

ure extraction procedures to obtain the matrix features for classi-

cation. Firstly, the EEG artifacts are removed with linear regres-

ion. Following [51] , we employ filter banks to remove unrelated

ensorimotor signals and a multi-class common spatial patterns
5 http://www.bbci.de/competition/iv/#dataset2a . 

s  

r  

o  
CSP) to select dominant channels for each motor imagery task.

hen the EEG signals are down sampled from 250 Hz/s to 50 Hz/s

o reduce the EEG time dimensionality and computation cost [52] .

o extract the most dominant matrix-form features, we choose

ime-domain parameters (TDP) [53] for its good performance and

ow computational cost. To evaluate the single-trial binary classi-

cation performance, we separate the four-class matrix data and

enerate C 2 
4 

= 6 binary data subsets, namely, L-vs-R, L-vs-F, L-vs-

, R-vs-F, R-vs-T and F-vs-T. Note that, we train for all methods

n the paradigm of single subject and average the prediction re-

ults of nine subjects for each subset. The testing performance is

eported in Table 4 . It is clear that the proposed method stably

utperforms all competitive classifiers on all binary matrix subsets,

http://www.bbci.de/competition/iv/#dataset2a
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Fig. 9. Classification results versus free parameters. Y axis denotes prediction accuracy, X axis denotes different values of γ (in the first row) and τ (in the second row). 
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which shows its strong efficiency in the task of EEG signal classi-

fication. This is due to the fact that EEG signals are usually highly

correlated, and the useful features are rather sparse. It also indi-

cates that our method can effectively capture these intrinsic struc-

tures. Taking the advantage of these features, SSMM can beat all

other methods that cannot capture the low-rank and sparse fea-

tures simultaneously. Over all the data subsets, our method con-

verges to global optimal values no more than 350 iterations. 

5.3.2. Dataset 2b of BCI Competition IV 

We further test each method on the Dataset 2b of BCI Competi-

tion IV 

6 , which is proposed to train classifiers for the detection of

motor imagery with left and right hand from nine healthy subjects.

For each subject, five sessions are provided, whereby the first two

sessions recorded without feedback are used for training and the

last three sessions with feedback are used for testing. 

To extract feature in matrix form from the raw data, we employ

the same preprocessing and feature extraction techniques used for

the dataset 2a of BCI IV as introduced in the previous section. The

results of all algorithms on the testing set are reported in Fig. 8 . It

shows that all the matrix classifiers consistently outperform SVM

on all subjects and our method achieves best performance com-

pared with other matrix classifiers. This indicates that with the

consideration of correlation among rows and columns, and feature

selection for each data matrix, the classification results for EEG

data can be enhanced. In addition, the SSVM with sparsity fea-

tures can also achieve superior performance compared with matrix

classifiers except ours on most of subjects, it shows that perform-

ing feature selection makes sense for the EEG classification. Due to

the simultaneous consideration of both low-rank and sparse prop-

erties, our method yields competitive performance consistently for

all the subjects, even for small sample problems. Note that for all

subsets, our method converges to global optimums with iterations

less than 240. 

5.4. Influence of free parameters 

We further test the influence of parameter settings for SSMM

on matrix classification. The two free parameters τ and γ in our

SSMM method are proposed to capture the correlation of data ma-

trix and the feature selection behaviors respectively. When τ is set

to be 0, our method degenerates to the SSVM; and when γ is 0,
6 http://www.bbci.de/competition/iv/#dataset2b . 

m  

o  

c  
ur method can be interpreted as the BSVM. To test the influence

f them, we first set τ to be fixed and tune γ into different values

etween [0, 100]. Then, we fix the value of γ and tune the pa-

ameter τ accordingly. Fig. 9 shows the classification performance

f SSMM on the INRIA dataset with different parameter settings. It

an be observed that, when either τ or γ is set to be larger than

, the performance is consistently better than when they are set

o be zero. The performance is rather consistent with γ ∈ (0, 100]

nd τ ∈ (0, 500], and can achieve best performance with appropri-

te γ / τ via cross validation. Similar phenomena also occur when

sing SSMM on other datasets. It shows that both the low-rank

ssumption and the sparse modeling of our SSMM method are ef-

ective and can enhance the classification performance. Thus, it can

e indicated that our idea to consider both correlation among ma-

rices, and perform feature selection simultaneously is reasonable

n real-world applications. 

. Conclusion 

In this paper, we propose a novel SSMM method for the prob-

em of matrix classification, which can be defined as a hinge loss

or model fitting, plus the combination of nuclear norm and the � 1 
orm. It is the first method to simultaneously capture the intrinsic

tructure for each matrix and select useful features for more inter-

retable modeling. Though the optimization problem is convex, the

inge loss, nuclear norm and � 1 norm are all non-smooth, which

akes it difficult to solve. We tackle this issue, and derive an ef-

cient algorithm based on the framework of generalized forward-

ackward splitting to solve it. We further conduct extensive com-

arative experiments on real-world applications, i.e., image classifi-

ation and EEG classification. For both tasks, our approach achieves

he state-of-the-art performance. It shows that taking both the in-

rinsic structure of each input matrix and feature selection into

onsideration does make sense, and can benefit empirical classifi-

ation tasks. It also shows the effectiveness of our SSMM method,

nd its promise to the real-world applications. 

This paper also casts light on several future works based on

he current SSMM method. To begin with, our method is designed

or binary classification problem, with the assumption that labels

n different samples are independent with each other. However, it

s common to see multi-class classification problems for data in

atrix form, or structural information involved within the label

f each data sample. We are interested to take these issues into

onsideration to develop advanced matrix classifiers for multi-class

http://www.bbci.de/competition/iv/#dataset2b
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54] or structural classification [55] . Another issue is that, the free

arameters γ , τ to control the sparseness and low-rank properties

espectively for regularization are required to be fine tuned for our

SMM method. We are looking forward to developing automatic

odel selection techniques to choose these parameters [6] . 
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