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Online Robust Projective Dictionary Learning:
Shape Modeling for MR-TRUS Registration

Yi Wang , Qingqing Zheng, Student Member, IEEE, and Pheng Ann Heng, Senior Member, IEEE

Abstract— Robust and effective shape prior modeling
from a set of training data remains a challenging task,
since the shape variation is complicated, and shape mod-
els should preserve local details as well as handle shape
noises. To address these challenges, a novel robust pro-
jective dictionary learning (RPDL) scheme is proposed in
this paper. Specifically, the RPDL method integrates the
dimension reduction and dictionary learning into a unified
framework for shape prior modeling, which can not only
learn a robust and representative dictionary with the energy
preservation of the training data, but also reduce the dimen-
sionality and computational cost via the subspace learning.
In addition, the proposed RPDL algorithm is regularized by
using the �1 norm to handle the outliers and noises, and
is embedded in an online framework so that of memory
and time efficiency. The proposed method is employed to
model prostate shape prior for the application of magnetic
resonance transrectal ultrasound registration. The experi-
mental results demonstrate that our method provides more
accurate and robust shape modeling than the state-of-the-
art methods do. The proposed RPDL method is applicable
for modeling other organs, and hence, a general solution for
the problem of shape prior modeling.

Index Terms— Dictionary learning, dimension reduc-
tion, MR-TRUS registration, online, prostate segmentation,
shape modelling.

I. INTRODUCTION

PROSTATE cancer is the most common noncutaneous
cancer and the second leading cause of cancer-related

deaths in males [1]. The routine clinical modality for imaging
the prostate, especially for image-guided prostate biopsy and
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treatments, is transrectal ultrasound (TRUS) [2]. However,
because of the low image quality of ultrasound, TRUS usually
results in an epidemic of overdetection and overtreatment of
prostate cancer [3]. On the other hand, with the development
of the technical feasibility of magnetic resonance (MR)-TRUS
registration [4]–[10], the MR-TRUS fusion based targeted
prostate biopsy has emerged as a new standard for the current
prostate biopsy schemes [3], [11], [12].

We have proposed a biomechanically constrained model-
to-surface registration approach [9] in our previous work
to compensate for the prostate deformation caused by the
insertion of the TRUS probe during MR-TRUS registration.
In our approach, based on principal component analy-
sis (PCA) technique [13], a personalized statistical deformable
model (PSDM) is constructed from numerous deformation
instances simulated with the physically-plausible boundary
conditions and patient-specific tissue elastic parameters. The
constructed PSDM is then served as prior to constrain the
devised hybrid point matching process to align the MR
prostate surface with the TRUS surface. However, PCA is
an unsupervised dimension reduction method that seeks to
preserve the global energy of training data but not the most
effective representation of them. When the training data are
insufficient or contaminated by outliers, the PSDM learned
by PCA may be much biased. In addition, the prerequisite
for the proposed model-to-surface registration is the accurate
segmentation of TRUS images. Any incorrect segmentation
may degrade the surface registration performance, which is
another limitation for the previous study.

Addressing the aforementioned limitations is the main
purpose of this study. We propose a robust projective dictio-
nary learning scheme for the efficient shape prior modelling.
The proposed method integrates the dimension reduction and
dictionary learning into a unified online framework, which
is beneficial to exploit more effectively the representative
information of training data via simultaneously learning the
projection and dictionary. Furthermore, the jointly learned
projection and dictionary is able to robustly and efficiently
model the prostate shape/deformation based on projective
sparse representation, despite the existence of local segmenta-
tion inaccuracies.

A. Relevant Work

Effective modelling of organ shape priors from a set of
training data still remains challenging, which can be sum-
marized in twofold. First, shape models should not only
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retain the global energy of training data, but also preserve
the discriminative local details of them. Second, since the
organ shapes are usually extracted from the segmentation
results, they may contain some gross errors or outliers due
to the erroneous segmentation. Thus shape models have to
be capable of robustly and efficiently approximating a new
instance despite the existence of gross errors or outliers.

Many approaches have been proposed to address some of
above challenges for robust and efficient shape/deformation
modelling. Several dimension reduction techniques, such
as PCA [13], kernel PCA [14], linear discriminant analy-
sis (LDA) [15], have been employed to reduce the dimension
of training data and also retain useful information of them.
As one of the most widely used dimension reduction tech-
niques, PCA projects the high dimensional training data into
a linear subspace spanned by a few dominant eigenvectors of
the covariance matrix of training data. PCA-based models have
shown promise for modelling prostate shape/deformation prior
thus constraining MR-TRUS registration [7]–[10], [16], [17].
PCA is simple to implement and efficient in reducing Gaussian
noise appeared in training data. However, PCA-based mod-
els may be biased and misrepresentative when training data
are insufficient or contaminated by non-Gaussian noises.
In addition, as an unsupervised dimension reduction method,
PCA only aims to preserve the global energy but not local
details, especially when such details are not predominant in
training data.

On the other hand, sparse representation based modelling
has been employed to robustly approximate a new shape
instance despite its gross errors [18], [19]. Such sparse repre-
sentation based methods have been widely used in computer
vision society [20]–[23], exploiting a sparse linear combi-
nation of training data to approximately represent a query
instance. In the context of shape modelling, sparse represen-
tation refers an input shape to a sparse linear combination
of shapes (atoms) in the shape repository (also known as
dictionary). The shapes of human organs usually contain
strong shape priors. Therefore, each shape often lies in a
small subset of shapes in the shape repository, namely the
shape can be characterized by a feature vector of much lower
dimensionality. This implies that atoms in the dictionary are
not incoherent but highly correlated [24]. While parts of the
shape may contain gross errors due to the erroneous measure-
ment/segmentation, such gross errors are usually sparse and
different from each other [18]. Benefiting from the sparsity
techniques, sparse representation is robust to gross errors and
is able to represent the clean component of a shape by the
sparse coding on the shape repository [25]. Zhang et al. [18]
employed sparse shape composition to model organ shapes.
The original training data (the segmented organ shapes) are
used as the dictionary atoms to represent the newly input
shape. Intuitively, a more robust and efficient representation
could be obtained if the dictionary is learned from the orig-
inal training data [19]. However, sparse representation based
dictionary learning may suffer from high dimensionality but
small training set problem, especially when exploring the
high-dimensional volumetric data, which limits the practical
application of dictionary learning.

In general, the dimension reduction and dictionary learning
techniques are mostly independently investigated. Conven-
tionally, dimension reduction (random projection, PCA, etc.)
is performed to original training data with high dimensionality,
and then the dimensionality reduced data are employed for
dictionary construction [26]. However, such dimensionality
reduced data obtained for dictionary learning may not cap-
ture the most representative training information, thus still
limiting the performance of dictionary learning. In principle,
the dimension reduction should aim to preserve representative
information of training data, and meanwhile remove unre-
liable dimensions for robust dictionary learning. Therefore,
the dimension reduction and dictionary learning have to be
jointly performed to fully exploit the representative infor-
mation of training data. To this end, we propose an online
robust projective dictionary learning (RPDL) scheme, which
integrates the dimension reduction and dictionary learning
into a unified online framework. The joint learning studies
more expressive projection and dictionary from each other,
thus a more effective shape representation can be obtained
by using projective sparse representation with a learned dic-
tionary. In the proposed RPDL, the projection and dictionary
can be simultaneously solved using an efficient optimization
scheme. Furthermore, the joint learning is embedded in an
online framework so that our scheme is of memory and time
efficiency.

B. Contributions

The main contributions of our work are threefold.
1) We propose a novel sparse representation scheme, called

robust projective dictionary learning (RPDL) to address
the shape modelling problem. Specifically, we integrate
the dimension reduction and dictionary learning into a
unified framework, which can not only learn a robust and
representative dictionary with the energy preservation of
the training data, but also reduce the dimensionality and
computational cost via the subspace learning. To our best
knowledge, the proposed RPDL is the first to address
the shape modelling problem with the simultaneous
projection and dictionary learning.

2) We propose a novel energy function for RPDL and
embed it in an online mechanism. We model the sparse
projective data fitting term in robust dictionary learning
by using the �1 norm to handle the outliers and noises.
To solve the resulting optimization problem, we also
develop an efficient algorithm based on the alternating
direction framework. Benefitting from the online learn-
ing mechanism, the proposed RPDL is of memory and
time efficiency, which notably enhances its practicality
and usability.

3) We extensively evaluate the proposed RPDL method on
the application of MR-TRUS registration. The experi-
mental results show that our method achieves state-of-
the-art performance. Due to its robustness, the newly
estimated shape with RPDL could be regarded as refine-
ment of the incorrectly segmented shape.

The remainder of this paper is organized as follow.
Section II presents the details of the proposed online robust
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Fig. 1. Flowchart of the proposed registration framework.

projective dictionary learning scheme. Section III presents the
experimental results of the proposed RPDL for the application
of MR-TRUS registration. Section IV elaborates the discussion
of the proposed method, and the conclusion of this study is
given in Section V.

II. METHOD

The effective shape modelling from a set of training data
is difficult since the shape variation is complicated, and
shape models should preserve local details as well as handle
shape noises. To address these issues, we propose a novel
robust projective dictionary learning (RPDL) scheme for shape
modelling and employ it to model prostate shape prior for the
application of MR-TRUS registration (Fig. 1). In the proposed
RPDL, the dimension reduction and dictionary learning are
jointly performed to fully exploit the representative informa-
tion of training shapes. Then the jointly learned projection
and dictionary is able to robustly and efficiently represent the
query TRUS shape based on projective sparse representation,
namely register the MR shape with the TRUS shape.

We discuss the proposed RPDL for shape modelling and
shape registration in detail in the following three subsec-
tions: (1) training data preparation based on biomechanical
modelling, (2) shape prior modelling based on online robust
projective dictionary learning, and (3) robust shape estimation
based on projective sparse representation.

A. Training Data Preparation
For each patient, we prepare training shape instances

according to the procedure described in our previous work [9].
More specifically, a series of patient-specific TRUS prostate
shapes are simulated with the anatomical meshes derived
from MR images and various physically-plausible boundary
conditions, based on finite element analysis (FEA) technique
(Fig. 2).

To obtain the anatomical meshes, we segment the prostate
in MR images via an interactive segmentation software:
SmartPaint [27]. Then, 50 evenly spaced points from the
segmented contour in each slice are sampled using a custom
interface developed using MATLAB (The MathWorks, Natick,
MA, USA). All these points are further converted into triangu-
lated anatomical meshes using an adaptive skeleton climbing
method [28], which can overcome the gap-filling problem in

Fig. 2. Training data preparation: a series of TRUS prostate shapes are
simulated based on MR prostate shape and FEA.

traditional marching cubes algorithm. All generated meshes
are imported into the commercial software COMSOL Multi-
physics (COMSOL, Inc., LA, USA) for the FE analysis.

When undergoing TRUS imaging, the prostate often
deforms, primarily due to the insertion of the TRUS probe.
To obtain training shape instances that are representative for
clinical cases, we conduct a series of simulations with biome-
chanical parameters obtained from shear wave elastography [9]
and different settings for the probe insertion conditions, via
the FEA software - COMSOL. Specifically, we perturb the
pose parameters, i.e., orientation, displacement, and original
position, of the virtual 3D TRUS probe within the specific
ranges defined in [9] to provide various boundary conditions
for each time of simulation. All the simulated TRUS prostate
shapes are calculated by the non-linear FE solver embedded
in the solid mechanical deformation module of COMSOL.
To represent the ith simulated shape, the coordinates of all
its m mesh vertices are concatenated into a vector xi ∈ R

q ,
where q = m × 3.

B. Shape Prior Modelling via Online Robust
Projective Dictionary Learning

1) Problem Formulation: Given the input training data X =
[x1, x2, · · · , xn], where xi ∈ R

q denotes each training shape,
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Fig. 3. Illustration of the term ||Pxi − Dzi||1 in our RPDL scheme.

we assume that the dictionary D belongs to a closed, convex
and bounded set D as:

D �= {D = [d1, d2, · · · , dk],
s.t. dT

j d j ≤ 1,∀ j = 1, · · · , k}, (1)

where d j is jth atom in D.
In general, traditional dictionary learning [19], [25],

[29]–[31] is based on the following sparse representation
function:

min
D∈D,Z

1

n

n∑

i=1

{||xi − Dzi ||22 + λ||zi ||1}, (2)

where Z = [z1, z2, · · · , zn] and each zi ∈ R
k encodes the

i th input xi with the dictionary D; ||zi ||1 is the sparsity
regularization and λ is a penalty parameter. In such a way,
each xi is represented as a sparse linear combination over
a set of basis vectors from D with its corresponding sparse
coefficient zi .

Different from conventional dictionary learning with
�2 minimization, we employ the �1 norm ||xi−Dzi ||1 to denote
the loss between the input data and the sparse dictionary
representation. The use of �1 norm enables the minimization
of the loss term more robust to noises and outliers [23].
Simultaneously, we also aim to learn a projection matrix
P ∈ R

p×q (p < q), which could preserve the energy of
the training data as a robust and representative subspace.
Moreover, it is helpful to reduce the computational cost
by dimension reduction. To this end, we propose an online
robust projective dictionary learning (RPDL) scheme, which
is beneficial to exploit more effectively the representative
information of training data via simultaneously learning the
projection and dictionary. We formulate the RPDL for sparse
representation by minimizing the following objective function:

L(P, D, Z) = 1

n

n∑

i=1

{||Pxi − Dzi ||1 + λ||zi ||1},

s.t. PPT = I, D ∈ D, (3)

where the fitting term ||Pxi − Dzi ||1 is illustrated in Fig. 3.
2) Optimization Framework: The traditional way to solve (3)

involves steps to update P, D and Z iteratively with the
batch learning procedure, assuming that all training data in
X can be provided at one time. However, this assumption
may not be satisfied when dynamic training instances arrive
in sequence or change over time. In addition, batch learning
approach could be infeasible for processing large-scale training

Algorithm 1 Online Robust Projective Dictionary
Learning

Input : Training data X = [x1, x2, · · · , xn],
regularization parameter λ, and mini-batch
training data size h.

Output: Dictionary D and projection P.
1 Initialize: D0, P0

for l ∈ {1, · · · , L} do
2 Initialize: D← Dl−1, P← Pl−1

for i ∈ {(l − 1)h + 1, · · · , lh} do
3 update zi = arg minz ||Pxi − Dz||1 + λ||z||1
4 end
5 update Dl by combining Dl−1 and
{z(l−1)h+1, · · · , zlh}, with fixed Pl−1 ;

6 update Pl by combining Pl−1 and {z(l−1)h+1, · · · , zlh}
with fixed Dl−1;

7 l ← l + 1
8 end
9 return D = Dl , and P = Pl

data, because the computational cost for batch learning is
dependent on the training data size. To address these issues,
we propose an online algorithm that processes a mini-batch
(or even one instance) of the training instances at a time,
which is particularly useful for processing large-scale and
dynamic data. Let h denote the size of mini-batch (1 ≤
h ≤ n) and l is the index for the coming mini-batch instances,
the proposed online algorithm incrementally learns the Pl , Dl

and {zi }lhi=(l−1)h+1 given the newly input {xi }lhi=(l−1)h+1, based
on the current best represented dictionary Dl−1 and projection
matrix Pl−1.

When processing each mini-batch training data, simultane-
ously solving P, D and Z in (3) is difficult, because both
the fitting term and the sparsity penalty are non-smooth and
non-differentiable, hence resulting in no closed-form solution.
To tackle this issue, we partition the whole optimization
problem in (3) into two subproblems, and solve them by an
iterative alternative direction method:

(Dt+1, {zi }t+1) = arg min
D,{zi}

L(Pt , D, {zi }) (4a)

Pt+1 = arg min
P

L(P, Dt+1, {zi }t+1), (4b)

where the superscript t denotes the iteration. Note that joint
minimization of D and {zi } in (4a) is a non-convex problem
due to the coupled fitting term. We solve (4a) by applying the
strategy similar to [32]. Dictionary learning updates D when
fixes {zi }, and updates {zi} when fixes D. We summarize the
whole steps for solving the optimization problem in (3) in
Algorithm 1. The whole optimization is presented in detail as
follows.

a) Update Sparse Coefficients Z: Given the dictionary D,
projection matrix P and input data xi , we can derive the
update of {zi } by solving the following �1 measured and �1
regularized convex optimization problem:

zi = arg min
zi

||Pxi − Dzi ||1 + λ||zi ||1. (5)
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We rewrite (5) into an equivalent optimization problem as
below:

zi = arg min
zi

∥∥∥∥

(
Pxi

0

)
−

(
D
λI

)
zi

∥∥∥∥
1
, (6)

which is a robust regression problem. Equation (6) cannot be
solved in the same way as �2 norm regression due to its non-
differentiability. Thus we resort to iterative reweighted least
squares (IRLS) algorithm [33] to update it.

Let b =
[

Pxi

0

]
∈ R

(p+k)×1 and A =
[

D
λI

]
∈ R

(p+k)×k ,

and b j denote the j th element of b. The IRLS algorithm solves
the following two problems iteratively:

zi ≈ arg min
z

p+k∑

j=1

ωi j (b j − A( j, :)z)2, (7)

ωi j = 1√
(b j − A( j, :)zi)2 + δ

, (8)

where δ (δ = 1e−6 in our implementation) is a small
positive constant that prevents zero divisor. Each iteration
of (7) involves minimizing a quadratic objective function. The
global optimum can be reached by setting the derivative to
be 0. This leads to solve zi in the linear programming as:

[
p+k∑

j=1

ωi j b j A( j, :)T ] = [
p+k∑

j=1

ωi j A( j, :)T A( j, :)]zi . (9)

We can denote si ∈ R
k×1 as si =∑p+k

j=1 ωi j b j A( j, :)T , and

Ci ∈ R
k×k as Ci =∑p+k

j=1 ωi j A( j, :)T A( j, :). Then the sparse
coefficients zi can be updated as:

zi = C−1
i si . (10)

b) Update Dictionary D: Given the projective input
{Pxi }ni=1 and the sparse coefficients {zi }ni=1. If without the
consideration of the constraint D ∈ D, the objective function
can be expressed as:

minL(D) = 1

n

n∑

i=1

||Pxi − Dzi ||1, (11)

which is also an �1 regression problem. Different from [32],
which stores intermediate parameters and treats all sam-
ples equally hence resulting in expensive computational cost
and unstable optimization, we resort to stochastic gradient
descent (SGD) algorithm [34] to update D iteratively. In each
iteration, given the projective input, the gradient with respect
to dictionary D can be derived as:

∇DL(D) = 1

h

lh∑

i=(l−1)h+1

sgn(Dzi − Pxi )zT
i , (12)

where sgn(·) is the sign operator. Then the update of D can
be calculated by

Dt+1 = Dt − η∇DtL(D), (13)

where η represents the learning rate.

Then considering the constraint D ∈ D, we conduct explicit
scaling with

d j = d j

max(1, ||d j ||2) . (14)

c) Update Projection P: Given the dictionary D and the
sparse coefficients {zi }ni=1, the objective function with respect
to P is:

min L(P) = 1

n

n∑

i=1

||Pxi − Dzi ||1,

s.t. PPT = I. (15)

If without the consideration of the orthonormal constraint
on P, the update of P can also be derived by SGD algorithm
with

Pt+1 = Pt − θ∇PtL(P), (16)

where θ represents the learning rate and ∇PL(P) is the
gradient, which can be calculated with

∇PL(P) = 1

h

lh∑

i=(l−1)h+1

sgn(Pxi − Dzi )xT
i . (17)

To preserve the orthonormal constraint, we employ the
Gram-Schmidt process to orthogonalize P with the following
four steps: i) rewrite P as P = [p1; · · · ; pr ; · · · ; pp] and
initialize the first vector in the orthogonal subspace as v1 =

p1
||p1||2 , ii) update pr by projecting it onto the null space of
[v1; v2; · · · ; vr−1] by

pr = pr −
i<r∑

i=1

vipT
r vi , (18)

iii) obtain vr by projecting pr onto the unit sphere, iv) finally
obtain P = [v1; · · · ; vr ; · · · ; vp].

C. Robust Shape Estimation via Projective
Sparse Representation

In practical, the query shape (i.e., segmented TRUS prostate
shape) y ∈ R

q may be partially unfaithful or corrupted
resulting from the segmentation inaccuracy. Let y0 denote the
ground truth of the query shape y and e denote the shape error,
we have

y = y0 + e. (19)

The nonzero entries of e model the shape error in y.
To sparsely code the partially inaccurate y over the dictio-
nary, previous methods [18], [21] used to modify the sparse
representation scheme by

arg min
z,e

||y− D0z− e||2 + λ1||z||1 + λ2||e||1, (20)

where D0 is the dictionary constructed by the original training
data or the learned atoms from the original training data;
||e||1 approximates the �0 norm to account the number of
nonzero entries in e; λ1 and λ2 are regularization parameters
which control the sparsity of z and e, respectively. Note that
the shape error e can be different for various query shapes,
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Fig. 4. The shape registration result on one patient dataset: (a) the TRUS
shape (red) and MR shape (green) before registration, (b) registration
using the projective sparse representation. It can be observed that the
MR shape can be well registered to the TRUS shape.

and hence it is difficult to determine the free parameter λ2
in advance. In addition, the iterative estimation for z and e
is computationally expensive, especially for high dimensional
query sample y.

To address above issues, we leverage the learned subspace P
and project the query shape y into a lower dimensional space
by Py. The subspace P is more representative than the original
high-dimensional space since it is learned simultaneously with
the dictionary and sparse representation given the training data.
Therefore we implicitly depress the outliers and noises by the
projective sparse representation scheme with

arg min
z
||Py− Dz||1 + λ||z||1, (21)

which is similar to (5) and can be efficiently solved.

D. Implementation Detail

The MR images are firstly resampled to the same dimen-
sionality and voxel size as the TRUS images. The MR and
TRUS images are then segmented with the method [27]
and [35], respectively, and further refined by an experienced
clinician for the correctness assurance. Note that after segmen-
tation, the TRUS prostate shape is constructed in a similar
way as described in Section II-A. Thus a rough one-to-one
point correspondence is obtained for both MR and TRUS
prostate shapes. Then our RPDL method is performed to
model the shape prior by jointly learning the projection and
dictionary from a series of simulated TRUS shape instances
(200 in our implementation). Once obtaining the optimal pro-
jection P and dictionary D, the projective sparse representation
(Equation (21)) is directly used to constrain the MR shape to
register with the TRUS shape. Fig. 4 illustrates one typical
shape registration result obtained from one patient dataset.
After the shapes are registered, the volumetric displacement
field inside the deformed shape is computed by interpo-
lating the shape displacement via thin-plate spline (TPS)
method [36], which can finally warp the MR images to the
TRUS images.

In our RPDL algorithm, we employ PCA to initialize P
and select the number of principal components as p = 20.
We initialize D randomly and choose the number of atoms
as k = 100. We set the size of mini-batch as h = 10,
the penalty parameter λ = 0.1, the learning rates η = 0.001

TABLE I
THE MAIN IDEA OF EACH COMPARED METHOD

and θ = 0.001. For the stopping criterion of each subproblem,
if the maximum iteration number (we set max I ter = 100)
is reached or the difference between the objective value in
adjacent iterations is smaller than a preset threshold ε = 1e−6,
algorithm stops and outputs the corresponding parameter.
Thanks to the warm start of {D, P}l−1, the update of {D, P}l
for the online training converges in several iterations.

III. EXPERIMENTS AND RESULTS

A. Materials

Experiments were carried on the datasets obtained from
eighteen patients with suspected prostate cancer at the First
Affiliate Hospital of Sun Yat-Sen University, Guangzhou,
Guangdong, China. The study protocol was reviewed and
approved by the Ethics Committee of Sun Yat-Sen University
and informed consent was obtained from all patients. The
methods were carried out in accordance with the approved
guidelines.

We acquired one set of MR and TRUS volumes from each
patient. The T2-weighted MR images were acquired using a
3.0 Tesla Siemens TrioTim MR scanner (Erlangen, Germany)
with a voxel size of 0.625 × 0.625 × 3.6 mm3. TRUS data
were obtained by Mindray DC-8 ultrasound system (Shenzhen,
China) with an integrated 3D TRUS probe. These data were
then reconstructed into a TRUS volume with a voxel size of
0.5 × 0.5 × 0.5 mm3. For each patient, the MR scanning
was performed several days ahead from the acquisitions of
TRUS; both MR and TRUS images were acquired in a patient-
centered coordinate system.1

B. Registration Performance
1) Compared Methods: To demonstrate the advantages of

the proposed RPDL on shape modelling, we compared the
RPDL with other four state-of-the-art shape modelling meth-
ods: PCA, sparse shape composition (SSC) [18], dictionary
learning (DL) [19], and PCA+DL. The main idea of each
compared method is listed in Table I, respectively. For each
patient data, all the five methods were employed to model
the TRUS prostate shape prior based on the same training
data. Then the shape prior models were used to constrain the
MR-TRUS registration.

1In patient-centered coordinate system, the coordinate axes are oriented in
the same direction regardless of the patient’s position on the scanner.
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Fig. 5. The registration results of two patients obtained by the proposed RPDL method: (a) TRUS images, (b) MR images, (c) registered MR images,
and (d) the checkerboard of (a) and (c) for comparison.

TABLE II
MEAN TRE AND REGISTRATION TIME FOR FIVE DIFFERENT METHODS

The target registration error (TRE) [37], defined as the
Euclidean distance between corresponding intrinsic landmarks
in MR and TRUS images, was measured to evaluate the
registration performance. All the landmarks used for TRE
calculation were first extracted by a urological physician
with extensive experience in interpreting the prostate MR
and TRUS images. The physician separately labeled each
landmark (e.g., centres of small nodules, cysts, calcifications,
etc.) in MR and TRUS images, and then correlated the
distinctly corresponding landmarks as pairs. To ensure the
anatomical consistency of landmark pairs, one more experi-
enced physician was invited to make necessary refinement and
confirmation of the landmark annotations. For each patient,
4-6 pairs of corresponding landmarks were extracted; and
totally 94 pairs of landmarks were extracted from eighteen
patients for the TRE calculation. Among the 94 pairs of
landmarks, 20, 59 and 15 pairs were within the base, mid-
gland and apex, respectively. The values of fiducial localization
error (FLE) [38] were 1.26 mm and 0.92 mm for the landmarks
obtained from MR and TRUS images, respectively. The low
FLE values indicate the reliable registration evaluation.

2) Registration Accuracy: Fig. 5 visualizes two registration
results obtained using the proposed RPDL method. Table II
summarizes the numerical TRE for each of the five methods.
The mean TRE was improved from the initial 6.78 mm,

to 1.51 mm, obtained by the proposed RPDL method. This
improvement proves the efficacy of our jointly learned projec-
tion and dictionary in representing the query shape. Specifi-
cally, our RPDL method yielded the TRE values of 1.42 mm,
1.46 mm and 1.81 mm within the base, mid-gland and apex
zones, respectively. The higher TRE value in apex zone is
mainly due to the large deformation in this zone caused by the
insertion of the TRUS probe. As shown in Table II, the mean
TRE values by performing the PCA, SSC, DL, PCA+DL
methods are 2.24 mm, 2.13 mm, 1.84 mm and 1.85 mm,
respectively. The TRE value by the proposed RPDL method
is approximately 32%, 29%, 18% and 18% lower than the
PCA, SSC, DL, PCA+DL method, respectively. These results
demonstrate that the jointly learned projection and dictionary
contribute to the improvement of the shape representation.
And the DL method performs better than the SSC method
due to the use of the more representative dictionary learned
from the original training data. The PCA+DL and DL methods
have similar TRE performances, which demonstrates that
the dimensionality reduced data obtained before dictionary
learning may not capture the most representative information
of training data, and hence not quite effective for the improve-
ment of dictionary learning.

To investigate the statistical significance of the proposed
RPDL method over PCA, SSC, DL, and PCA+DL methods,
a series of statistical analyses are conducted. First,
the Bartlett’s test [39] is used to analyze the homoscedas-
ticity of variances for the TREs of different methods. The
null hypothesis is not rejected, suggesting that the variances
are statistically equal across all sets of TREs. Based on
the homoscedasticity property, the one-way analysis of vari-
ance (ANOVA) [40] is further performed to evaluate if the
TREs of different methods are statistically different. The
resulting F (= 6.70) > Fcrit ical (= 2.48) indicates that
the differences between the TREs on 18 patients from the
five methods are statistically significant. In addition, the two-
sample, two-tailed t-test is employed to pairwisely compare
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Fig. 6. Two shape representation results obtained by the proposed RPDL method on synthetic noisy query shapes: (a) original segmented TRUS
prostate shapes, (b) the noise perturbed shapes of (a), (c) the corresponding RPDL represented shapes using (b) as query shapes, and (d) the
comparison of (a), (b) and (c).

TABLE III
P-VALUES OF STUDENT TESTS BETWEEN DIFFERENT METHODS

the performances between the RPDL and the other four
methods (see Table III). The resulting p-values of the pairs
RPDL-PCA, RPDL-SSC, RPDL-DL and RPDL-PCA+DL are
1.01e−6, 7.12e−3, 2.14e−2 and 2.98e−3, respectively. It can
be concluded that the null hypotheses for the four comparing
pairs are not accepted at the 0.05 level. As a result, our
method is significantly better than the other four compared
methods. Table III further reports the p-values between the
four compared methods. It can be observed from Table III
that DL method is significantly better than the PCA method,
which demonstrates the effect of the sparse representation
based dictionary learning on accurate shape representation.
In addition, the performance difference between DL and
PCA+DL methods is not statistically significant, whereas the
differences of RPDL-DL and RPDL-PCA+DL are significant,
which proves the effect of joint projection and dictionary
learning on effective shape representation.

For each patient data, the average time for each method to
register MR and TRUS shapes is listed in Table II, respectively.
On a workstation with Intel Xeon E5-1620 3.70 GHz CPU
and 16.0 GB RAM, and with a MATLAB implementation,
it takes averagely 0.20 s for our RPDL method to sparsely
represent the query TRUS shape over the dimensionality
reduced dictionary. The PCA+DL method achieves the similar
time cost due to the same dimension reduction and sparse

representation principle. Both SSC and DL methods are slower
than the proposed RPDL method, because they perform sparse
representation in higher dimensional dictionary space. The
fastest method is the PCA method that conducts least-square
regression in dimensionality reduced subspace.

C. Robustness to Inaccurate Query Shape
In practical, the query TRUS shape may be partially unfaith-

ful or corrupted due to inaccurate segmentations. In such a
case, any incorrect TRUS shape representation may probably
degrade the performance of shape registration by conventional
point matching methods [41], [42]. Fortunately, such outliers
and noises could be implicitly depressed by our projective
sparse representation scheme, which makes our method robust
to partially inaccurate query shape. To illustrate the robustness
of our method to partially inaccurate query shape, we con-
ducted twofold experiments by validating the synthetic noisy
shape and realistic noisy shape.

1) Synthetic Noisy Query Shape: We first perform extensive
experiments by systematically perturbing the positions of
points from the original query shape with positive and negative
offsets for the MR-TRUS shape registration on all 18 patient
data. For each patient, the originally segmented TRUS shape
is perturbed by five different percentages (i.e., 20%, 40%,
60%, 80% and 100% randomly selected shape points) and
five different amplitudes (i.e., ±(0-5), ±(5-10), ±(10-15),
±(15-20) and ±(20-25) pixels of original point position).

Fig. 6 visualizes the shape representation results obtained
using our RPDL method on synthetic noisy query shapes.
It can be observed from Fig. 6 that our projective sparse
representation is able to robustly and faithfully represent the
query shape despite its partial inaccuracy. Table IV summa-
rizes the registration performances with respect to the changes
of noise level of the query shape. Specifically, the mean and
standard deviation of TREs are reported. It can be observed
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TABLE IV
IMPACT OF NOISE LEVEL OF THE QUERY SHAPE ON REGISTRATION: TREs (MEAN±SD in mm)

TABLE V
IMPACT OF NOISE LEVEL OF THE QUERY SHAPE ON

REGISTRATION: P-VALUES BETWEEN TREs OF

NOISY AND ORIGINAL QUERY SHAPES

from Table IV that the mean TRE value got worse with the
increase of noise level, from 1.51 mm when 20% points were
with ±(0-5) offsets, to 3.68 mm when all points were with
±(20-25) offsets. To further demonstrate the statistical signif-
icance between the registration results of using noisy query
shape and original query shape, the p-values of student tests
are reported in Table V. As shown in Table V, the performance
differences of image registration are statistically insignificant
when inaccurate points are i) within 20% and have offsets
smaller than 25 pixels, or ii) within 40% and have off-
sets smaller than 20 pixels, or iii) within 60% and have offsets
smaller than 15 pixels, or iv) have offsets smaller than 5 pixels.
The statistical analyses shown in Table V demonstrate that
our proposed RPDL could be regarded as an effective method
for the robust representation of the query shape, despite its
partially inaccurate segmentation.

2) Realistic Noisy Query Shape: We further invited a junior
physician to manually segment all TRUS images and used
the segmented TRUS shapes as query shapes to conduct
MR-TRUS shape registration. Because this junior physician
is without too much experience in interpreting the prostate
TRUS images, the segmented TRUS shapes may be partially
inaccurate. Fig. 7 illustrates one typical segmentation result
obtained by the junior physician (blue contour), as well as the
ground truth (green contour) for comparison. Fig. 8(a) shows
the 3D comparison between the accurate TRUS shape (green)
and the partially inaccurate TRUS shape (blue) obtained by the
junior physician. As shown in Figs. 7 and 8(a), there existed
some realistic gross errors in the TRUS shape obtained by the
junior physician.

Fig. 7. The comparison results of TRUS contours. Green contour is the
ground truth of TRUS prostate segmentation. Blue contour is the seg-
mentation result by a junior physician. Red contour is the approximately
represented TRUS shape using our method. Compared to the contour
obtained by the junior physician (blue), ours (red) is more similar to the
ground truth (green).

Fig. 8. The shape representation result obtained by our method on
realistic noisy query shape: (a) the comparison between the accurate
TRUS shape (green) and the partially inaccurate TRUS shape (blue)
obtained by a junior physician, (b) the comparison between the accurate
TRUS shape (green) and our represented TRUS shape (red) using blue
shape as the query shape.

By using the partially inaccurate TRUS shapes as query
shapes to conduct MR-TRUS shape registration, the TRE
value of our method degraded to 2.63 ± 1.73 mm, from
1.51± 0.71 mm obtained using accurate TRUS shapes. How-
ever, the mean TRE of 2.63 mm still largely improved the
initial 6.78 mm TRE value. Furthermore, because our method
is, to some extent, robust to partially inaccurate query shape,
it is potentially useful for the refinement of the incorrectly
segmented query shape. Figs. 7 and 8 further visualize the
comparisons of the ground truth shape and our represented
TRUS shape using inaccurate query shape. It can be observed
from Figs. 7 and 8 that our projective sparse representation is
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TABLE VI
QUANTITATIVE EVALUATION OF DIFFERENT TRUS SHAPES

Fig. 9. Training time comparison between online and offline modes.

able to robustly represent the query shape despite its partial
inaccuracy. Table VI further reports the quantitative evaluation
of the shape by the junior physician and our represented shape.
The Dice coefficient, average boundary distance (ABD) and
Hausdorff distance (HD) [43] were calculated to evaluate the
difference between ground truth and different TRUS shapes.
As shown in Table VI, comparing to the shape obtained by
the junior physician, our represented shape is more similar
to the ground truth. Therefore the represented shape by our
method could be regarded as a refinement of the inaccurate
query shape.

D. Temptation of Online Mechanism

In real-world applications, the adequate number of training
data usually cannot be collected all at once, also it is always
better to add more newly collected data to enrich the training
information, thus an efficient learning scheme is necessary for
the optimization of training. We demonstrate the advantages of
our online framework in terms of time and memory efficiency.

1) Training Time: Assume the training instance is collected
and used for the training one by one, the computation time
of the joint dimension reduction and dictionary learning with
online and offline mechanisms is illustrated in Fig. 9. We can
observe that the computation time for each training instance
using our online setting keeps almost constant (less than 3 s),
while the computation complexity of offline setting is growing
linearly as the amount of training instances increases.

2) Memory Usage: Assume we process h training instances
per time, when the lth mini-batch training instances arrive,
our online method needs to store the newly arrived instances
Xl = [xh(l−1)+1, · · · , xhl ], the sparse coefficients Z, the dic-
tionary D and the projection P, which requires the memory

of size qh, kh, pk and pq , respectively. For the updating
of Z, our online method needs to store the intermediate
variables A, b and weights W, which needs (p + k)k + (p +
k) + (p + k) elements for each instance. For the updating
of D and P with SGD algorithm, the online method needs
to store the gradient ∇DL(D) and ∇PL(P), which takes the
memory of size pk and pq , respectively. Finally, to preserve
the orthonormal constraint of P, the online method stores a
finite and linear independent set V, which supposes to store
(p− 1)q elements. Thus our online method requires memory
of size [(q + k)+ (p + k)(k + 2)]h + 2 pk + 3 pq − q .

For the offline method (here we take PCA+DL method as
an example), when the N th instance comes, it needs to save
all the training instances XN = [x1, · · · , xN ], which takes
q N elements. For dimension reduction, we assume PCA uses
a condensed SVD with p singular values, which supposes
to save pq + p2 + pN elements. For the DL, it requires to
store the dictionary D, sparse atom sets {DΓ }Ni=1 and sparse
coefficients Z, which occupies pk, pk N and k N elements,
respectively. For the updating of dictionary, for each atom,
it first stores an error matrix {E}kj=1 and then uses SVD to
find the largest singular vector, which takes memory of size
(pN + p+ 1+ N)k. Thus the PCA+DL method requires the
memory of size (p+ q + 2 pk + 2k)N + pq + p2 + 2 pk + k.

In general, the comparison shows that the memory required
by offline method scales with the training size N , while ours
keeps constant.

IV. DISCUSSIONS

In this paper, a novel robust projective dictionary learn-
ing (RPDL) scheme for the shape prior modelling is presented.
Specifically, we propose to jointly optimize the processes of
dimension reduction and dictionary learning using a unified
online framework. The joint learning is beneficial to make
the projection and dictionary more appropriate with each
other, and hence a more representative shape prior modelling
of training data can be obtained. With the jointly learned
projection and dictionary, the query shape can be robustly and
efficiently represented based on projective sparse representa-
tion. We employ the proposed RPDL method to model prostate
shape prior for the application of MR-TRUS registration. The
experimental results suggest that the proposed method can
achieve promising registration accuracy. The averaged target
registration error obtained using our method is 1.51 mm, which
meets the clinical requirement of 1.9 mm for the accurate
identification of 95% targets with high Gleason score [44].

This work is an extension of our previous work [9]. The
differences between [9] can be significant in twofold. First,
the shape model in [9] was learned from the training data via
PCA method in batch mode. In this study, the shape model
is learned by the projective dictionary learning with online
mechanism. Second, the registration schemes implemented
in [9] and this study are distinctive. In [9], a hybrid scheme
was adopted to constrain the registration by using both the
learned shape model and the similarity of the modality inde-
pendent neighborhood descriptor. In this study, the registration
is simplified by using only the learned model to constrain
the shape-based registration, thus reducing the computational
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cost of the multi-modality similarity measure. Accordingly,
the method in this work can be more general, efficient and
clinically practical. In addition, this work is also different
from [6] and [7], which rely heavily on the FEA to obtain
MR-TRUS fusion. Our method only simply uses FEA [9] to
prepare training shapes for the proposed projective dictionary
learning and sparse representation.

To demonstrate the advantage of joint dimension reduc-
tion and dictionary learning for the shape prior modelling,
we further compare our proposed method with other four
state-of-the-art shape modelling methods: PCA, SSC [18],
DL [19], and PCA+DL. As shown in Table II, the com-
parison results demonstrate that our method provides more
accurate and robust MR-TRUS registration than state-of-the-
art methods do. Such improvement is shown to be statistically
significant in Table III. These satisfactory comparison results
demonstrate that the proposed method is beneficial to exploit
more effectively the representative information of training data
via simultaneously learning the projection and dictionary, and
the jointly learned projection and dictionary further contribute
to the improvement of the shape representation. In addition
to the advantages of robustness and accuracy, our proposed
method also possesses fast processing speed. Our method only
takes 0.20 s to sparsely represent the query shape over the
dimensionality reduced dictionary. Accordingly, our method
can achieve small registration error and fast registration time
and can be more clinically practical.

One key limitation of conventional model constrained shape
registration methods is that the query shape (i.e., the shape
needs to be registered) may not be faithfully represented due
to inaccurate segmentation, thus the estimated shape using
learned prior model may not always be close to the real
case. In the case of TRUS prostate segmentation, because
of the low signal-to-noise ratio, TRUS usually falls short of
clearly depicting the prostate boundary, resulting in a high
variability of segmentation [45]. Due to the high variability
of TRUS segmentation, the segmented TRUS shape may
be partially unfaithful or corrupted, and hence degrading
the performance of model constrained shape registration.
Accordingly, the robust representation of TRUS shape despite
its partial inaccuracy deems to be necessary in our shape
registration problem. Different from conventional dictionary
learning methods, we embed the �1 sparse data fitting term in
our projective dictionary learning, which enables our RPDL
method to handle the problem of partial inaccuracies of the
query shape. Taking advantage of the proposed projective
sparse representation, our method can implicitly depress noise
in the query shape and further robustly and faithfully model
this shape, as shown in Tables IV, V and VI. Therefore our
method could help ease the TRUS segmentation process, and
is more clinically practical and feasible.

Our proposed method is potentially useful for the refine-
ment of the incorrectly segmented query shape, as shown
in Figs. 6, 7 and 8. Clinicians can compare and analyze both
the query shape and the shape obtained using our method,
thus achieving a refined shape/segmentation. And thanks to our
online learning mechanism, the refined shape could be used
easily to enrich the training set for the further optimization of

the projection and dictionary. In addition, our proposed online
framework is beneficial for joint dimension reduction and
dictionary learning in terms of memory and time efficiency.
Thus our framework caters to the requirement of large scale
streaming medical data processing.

V. CONCLUSION

This work presents a pioneer study that integrates the
dimension reduction and dictionary learning into a unified
online scheme for shape prior modelling. The effective shape
modelling from a set of training data is difficult since the shape
variation is complicated, and shape models should preserve
local details as well as handle shape noises. To address
this difficult problem, we propose a novel robust projective
dictionary learning (RPDL) scheme for jointly optimizing the
projection and dictionary, which is beneficial to exploit more
effectively the representative information of training data. The
joint learning is embedded in an online framework so that
our scheme is of memory and time efficiency. The jointly
learned projection and dictionary is able to robustly and
efficiently represent the query instance based on projective
sparse representation. We employ the proposed RPDL to
model prostate shape prior for the practical application of
MR-TRUS registration. The experimental results demonstrate
that our proposed RPDL method provides more accurate and
robust shape modelling than state-of-the-art methods do. The
proposed RPDL method is a general solution for the problem
of shape prior modelling, and also is potentially useful for the
shape refinement.
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