import sympy as sym
import numpy as np
import matplotlib.pylab as plt
import seaborn as sns
sns.set()
In the first step, the geometrical and kinematical parameters are set. They are numerical expressions. In order to separate expressions from symbols, for symbolic computing, expressions have an underline, i.e. R1_ is an expression and R1 is a symbol.
# Geometrical constants, prescribed pressure drop and prescribed velocity
relativeEccentrcity = 0.5
R2_ = 7.6
R1_ = 5
shift = (R2_-R1_)*relativeEccentrcity
u_R_ = -0.4
dp_ = 10*10**-5
l_ = 1.55
mu_ = 10.11
R1, R2, gamma, xi, eta, x, y = sym.symbols('R1 R2 gamma xi eta x y', real=True)
b, A, B, C = sym.symbols('b, A B C', real=True)
epsilon, kappa, alpha, beta = sym.symbols('epsilon kappa alpha beta', real=True)
c, M, F, Psi, u_R, mu, l, dp = sym.symbols('c M F Psi u_R mu l dp', real=True)
k, m, n = sym.symbols('k m n', integer=True)
In what follows the fluid velocity of [PHW33] is implemented. The velocity of [PHW33] is due to a pressure drop $dp$
$$\frac{M^{2} dp \left(A \eta + B + \Psi - \frac{- \cos{\left(\xi \right)} + \cosh{\left(\eta \right)}}{4 \cos{\left(\xi \right)} + 4 \cosh{\left(\eta \right)}}\right)}{l \mu}$$and the velocity due to the motion of the inner boundary, proposed in [LG21] is given by
$$\frac{u_{R} \left(- \alpha + \eta\right)}{- \alpha + \beta}$$The overall eccentric annular flow velocity then is the superposition of both.
u = (dp/(mu*l))*M**2*(Psi+A*eta+B-(sym.cosh(eta)-sym.cos(xi))/(4*(sym.cosh(eta)+sym.cos(xi))))
u = u + (u_R/(beta-alpha))*(eta-alpha)
u
A_ = (sym.coth(alpha)-sym.coth(beta))/(2*(alpha-beta))
A_
B_ = (beta*(1-2*sym.coth(alpha))-alpha*(1-2*sym.coth(beta)))/(4*(alpha-beta))
B_
F_ = (R2**2-R1**2+b**2)/(2*b)
F_
M_ = sym.sqrt(F**2-R2**2)
M_
alpha_ = 0.5*sym.ln((F+M)/(F-M))
alpha_
beta_ = 0.5*sym.ln((F-b+M)/(F-b-M))
beta_
summand = sym.exp(-n*beta)*sym.coth(beta)*sym.sinh(n*(eta-alpha))
summand = summand - sym.exp(-n*alpha)*sym.coth(alpha)*sym.sinh(n*(eta-beta))
summand = (sym.cos(n*xi)/(sym.sinh(n*(beta-alpha))))*summand
Psi_ = sym.Sum((-1)**n*summand, (n, 1, m))
Psi_
The eccentric annulus is transformed to a rectangle by the transform $$w(z)=2\arctan\left(\frac{z+i\cdot \gamma}{c}\right)$$
It is a slightly adapted version of the mapping from [PHW33]. The new mapping from [LG21] includes a shift in the imaginary axis described by $\gamma$. This shift is added in order be able to apply the mapping $w$ directly to the original eccentric annulus.
gamma_ = (M_*sym.coth(alpha_.subs(M, M_))).subs(F, F_)
gamma_ = float(gamma_.subs(R2, R2_).subs(R1, R1_).subs(b, abs(shift)))
Separating imaginary and real parts yields the new cartesian coordinates in the w-plane. In this plane, the eccentric annulus is described by a rectangle.
eta_ = (M**2 - 2*M*(y+gamma) + x**2 + (y+gamma)**2)
eta_ = (M**2 + 2*M*(y+gamma) + x**2 + (y+gamma)**2)/eta_
eta_ = sym.ln(eta_)/2
eta_
xi_ = -sym.atan2(2*M*x, (M**2 - x**2 - (y+gamma)**2))
xi_
alphaNum = alpha_.subs(M, M_).subs(F, F_).subs(R2, R2_).subs(R1, R1_)
alphaNum = float(alphaNum.subs(b, abs(shift)))
betaNum = beta_.subs(M, M_).subs(F, F_).subs(R2, R2_).subs(R1, R1_)
betaNum = float(betaNum.subs(b, abs(shift)))
cNum = M_.subs(F, F_).subs(R2, R2_).subs(R1, R1_)
cNum = float(cNum.subs(b, abs(shift)))
velW = u.subs(A, A_).subs(B, B_).subs(Psi, Psi_)
velW = velW.subs(alpha, alpha_).subs(beta, beta_)
velW = velW.subs(M, M_).subs(F, F_)
velW = velW.subs(R2, R2_).subs(R1, R1_).subs(b, abs(shift))
velW = velW.subs(gamma, gamma_).subs(u_R, u_R_).subs(mu, mu_)
velW = velW.subs(l, l_).subs(dp, 10**5*dp_)
uwNum = sym.lambdify((xi, eta), velW.subs(m, 100))
# Geometry creation and plotting
Xi = np.linspace(-np.pi, np.pi, 200)
Eta = np.linspace(alphaNum, betaNum, 200)
Xi, Eta = np.meshgrid(Xi, Eta)
fig, ax = plt.subplots(figsize=(9, 9))
plt.pcolor(Xi, Eta, uwNum(Xi, Eta), cmap='rainbow')
<matplotlib.collections.PolyCollection at 0x7fa3fc397130>
Now, taking the velocity from the pervious cells and expressing $\xi$ and $\eta$ by $x$ and $y$, the velocity can be evaluated and plotted in the eccentric annulus!
velZ = u.subs(A, A_).subs(B, B_).subs(Psi, Psi_)
velZ = velZ.subs(eta, eta_).subs(xi, xi_)
velZ = velZ.subs(alpha, alpha_).subs(beta, beta_)
velZ = velZ.subs(M, M_).subs(F, F_)
velZ = velZ.subs(R2, R2_).subs(R1, R1_).subs(b, abs(shift))
velZ = velZ.subs(gamma, gamma_).subs(u_R, u_R_).subs(mu, mu_)
velZ = velZ.subs(l, l_).subs(dp, 10**5*dp_)
uzNum = sym.lambdify((x, y), velZ.subs(m, 100))
# Geometry creation and plotting
X = np.linspace(-np.pi, np.pi, 200)
Y = np.linspace(alphaNum, betaNum, 200)
X, Y = np.meshgrid(X, Y)
zeta = X + 1j*Y
x_y = cNum*np.tan(zeta/2)
X = np.real(x_y)
Y = np.imag(x_y)-gamma_
fig, ax = plt.subplots(figsize=(9, 9))
plt.pcolormesh(X, Y, uzNum(X, Y), cmap='rainbow')
plt.colorbar()
/tmp/ipykernel_112/95204035.py:21: UserWarning: The input coordinates to pcolormesh are interpreted as cell centers, but are not monotonically increasing or decreasing. This may lead to incorrectly calculated cell edges, in which case, please supply explicit cell edges to pcolormesh. plt.pcolormesh(X, Y, uzNum(X, Y), cmap='rainbow')
<matplotlib.colorbar.Colorbar at 0x7fa357f77910>
LG21Lauer-Baré Z. and Gaertig E., Conformal Mappings with SymPy: Towards Python-driven Analytical Modeling in Physics, PROC. OF THE 20th PYTHON IN SCIENCE CONF. (SCIPY 2021)
LGKS23 Lauer-Baré Z., Gaertig E., Krebs J., Sleziona C. Analytical formulae in fluid power, quo vadis in times of CFD and I4.0? 13th International Fluid Power Conference, p. 866-879, 2023
PHW33 Piercy NAV, Hooper MS, Winny HF. LIII. Viscous flow through pipes with cores, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1933