Out[11]:
\(\displaystyle \begin{array}{lcl} \Gamma_{ \phantom{\, {\tau}} \, {\tau} \, r }^{ \, {\tau} \phantom{\, {\tau}} \phantom{\, r} } & = & \frac{r^{4} \frac{\partial\,\Delta_r}{\partial r} + r^{2} y^{2} \frac{\partial\,\Delta_r}{\partial r} - 2 \, r^{3} \Delta_r\left(r\right) + 2 \, r^{3} \Delta_y\left(y\right)}{2 \, {\left(r^{4} \Delta_r\left(r\right) + 2 \, r^{2} y^{2} \Delta_r\left(r\right) + y^{4} \Delta_r\left(r\right)\right)}} \\ \Gamma_{ \phantom{\, {\tau}} \, {\tau} \, y }^{ \, {\tau} \phantom{\, {\tau}} \phantom{\, y} } & = & \frac{2 \, y^{3} \Delta_r\left(r\right) - 2 \, y^{3} \Delta_y\left(y\right) + {\left(r^{2} y^{2} + y^{4}\right)} \frac{\partial\,\Delta_y}{\partial y}}{2 \, {\left(r^{4} + 2 \, r^{2} y^{2} + y^{4}\right)} \Delta_y\left(y\right)} \\ \Gamma_{ \phantom{\, {\tau}} \, r \, {\varphi} }^{ \, {\tau} \phantom{\, r} \phantom{\, {\varphi}} } & = & -\frac{2 \, r^{5} \Delta_y\left(y\right) - {\left(r^{2} \frac{\partial\,\Delta_r}{\partial r} - 2 \, r \Delta_r\left(r\right)\right)} y^{4} - {\left(r^{4} \frac{\partial\,\Delta_r}{\partial r} - 4 \, r^{3} \Delta_r\left(r\right)\right)} y^{2}}{2 \, {\left(r^{4} \Delta_r\left(r\right) + 2 \, r^{2} y^{2} \Delta_r\left(r\right) + y^{4} \Delta_r\left(r\right)\right)}} \\ \Gamma_{ \phantom{\, {\tau}} \, y \, {\varphi} }^{ \, {\tau} \phantom{\, y} \phantom{\, {\varphi}} } & = & \frac{2 \, y^{5} \Delta_r\left(r\right) + 2 \, {\left(r^{4} y + 2 \, r^{2} y^{3}\right)} \Delta_y\left(y\right) - {\left(r^{4} y^{2} + r^{2} y^{4}\right)} \frac{\partial\,\Delta_y}{\partial y}}{2 \, {\left(r^{4} + 2 \, r^{2} y^{2} + y^{4}\right)} \Delta_y\left(y\right)} \\ \Gamma_{ \phantom{\, r} \, {\tau} \, {\tau} }^{ \, r \phantom{\, {\tau}} \phantom{\, {\tau}} } & = & \frac{r^{2} \Delta_r\left(r\right) \frac{\partial\,\Delta_r}{\partial r} + y^{2} \Delta_r\left(r\right) \frac{\partial\,\Delta_r}{\partial r} - 2 \, r \Delta_r\left(r\right)^{2} + 2 \, r \Delta_r\left(r\right) \Delta_y\left(y\right)}{2 \, {\left(r^{6} + 3 \, r^{4} y^{2} + 3 \, r^{2} y^{4} + y^{6}\right)}} \\ \Gamma_{ \phantom{\, r} \, {\tau} \, {\varphi} }^{ \, r \phantom{\, {\tau}} \phantom{\, {\varphi}} } & = & \frac{y^{4} \Delta_r\left(r\right) \frac{\partial\,\Delta_r}{\partial r} + 2 \, r y^{2} \Delta_r\left(r\right) \Delta_y\left(y\right) + {\left(r^{2} \Delta_r\left(r\right) \frac{\partial\,\Delta_r}{\partial r} - 2 \, r \Delta_r\left(r\right)^{2}\right)} y^{2}}{2 \, {\left(r^{6} + 3 \, r^{4} y^{2} + 3 \, r^{2} y^{4} + y^{6}\right)}} \\ \Gamma_{ \phantom{\, r} \, r \, r }^{ \, r \phantom{\, r} \phantom{\, r} } & = & -\frac{r^{2} \frac{\partial\,\Delta_r}{\partial r} + y^{2} \frac{\partial\,\Delta_r}{\partial r} - 2 \, r \Delta_r\left(r\right)}{2 \, {\left(r^{2} \Delta_r\left(r\right) + y^{2} \Delta_r\left(r\right)\right)}} \\ \Gamma_{ \phantom{\, r} \, r \, y }^{ \, r \phantom{\, r} \phantom{\, y} } & = & \frac{y}{r^{2} + y^{2}} \\ \Gamma_{ \phantom{\, r} \, y \, y }^{ \, r \phantom{\, y} \phantom{\, y} } & = & -\frac{r \Delta_r\left(r\right)}{{\left(r^{2} + y^{2}\right)} \Delta_y\left(y\right)} \\ \Gamma_{ \phantom{\, r} \, {\varphi} \, {\varphi} }^{ \, r \phantom{\, {\varphi}} \phantom{\, {\varphi}} } & = & \frac{y^{6} \Delta_r\left(r\right) \frac{\partial\,\Delta_r}{\partial r} + {\left(r^{2} \Delta_r\left(r\right) \frac{\partial\,\Delta_r}{\partial r} - 2 \, r \Delta_r\left(r\right)^{2}\right)} y^{4} - 2 \, {\left(r^{5} \Delta_r\left(r\right) + 2 \, r^{3} y^{2} \Delta_r\left(r\right)\right)} \Delta_y\left(y\right)}{2 \, {\left(r^{6} + 3 \, r^{4} y^{2} + 3 \, r^{2} y^{4} + y^{6}\right)}} \\ \Gamma_{ \phantom{\, y} \, {\tau} \, {\tau} }^{ \, y \phantom{\, {\tau}} \phantom{\, {\tau}} } & = & -\frac{2 \, y \Delta_r\left(r\right) \Delta_y\left(y\right) - 2 \, y \Delta_y\left(y\right)^{2} + {\left(r^{2} + y^{2}\right)} \Delta_y\left(y\right) \frac{\partial\,\Delta_y}{\partial y}}{2 \, {\left(r^{6} + 3 \, r^{4} y^{2} + 3 \, r^{2} y^{4} + y^{6}\right)}} \\ \Gamma_{ \phantom{\, y} \, {\tau} \, {\varphi} }^{ \, y \phantom{\, {\tau}} \phantom{\, {\varphi}} } & = & \frac{2 \, r^{2} y \Delta_r\left(r\right) \Delta_y\left(y\right) - 2 \, r^{2} y \Delta_y\left(y\right)^{2} + {\left(r^{4} + r^{2} y^{2}\right)} \Delta_y\left(y\right) \frac{\partial\,\Delta_y}{\partial y}}{2 \, {\left(r^{6} + 3 \, r^{4} y^{2} + 3 \, r^{2} y^{4} + y^{6}\right)}} \\ \Gamma_{ \phantom{\, y} \, r \, r }^{ \, y \phantom{\, r} \phantom{\, r} } & = & -\frac{y \Delta_y\left(y\right)}{r^{2} \Delta_r\left(r\right) + y^{2} \Delta_r\left(r\right)} \\ \Gamma_{ \phantom{\, y} \, r \, y }^{ \, y \phantom{\, r} \phantom{\, y} } & = & \frac{r}{r^{2} + y^{2}} \\ \Gamma_{ \phantom{\, y} \, y \, y }^{ \, y \phantom{\, y} \phantom{\, y} } & = & \frac{2 \, y \Delta_y\left(y\right) - {\left(r^{2} + y^{2}\right)} \frac{\partial\,\Delta_y}{\partial y}}{2 \, {\left(r^{2} + y^{2}\right)} \Delta_y\left(y\right)} \\ \Gamma_{ \phantom{\, y} \, {\varphi} \, {\varphi} }^{ \, y \phantom{\, {\varphi}} \phantom{\, {\varphi}} } & = & \frac{2 \, r^{4} y \Delta_y\left(y\right)^{2} - {\left(r^{6} + r^{4} y^{2}\right)} \Delta_y\left(y\right) \frac{\partial\,\Delta_y}{\partial y} + 2 \, {\left(2 \, r^{2} y^{3} \Delta_r\left(r\right) + y^{5} \Delta_r\left(r\right)\right)} \Delta_y\left(y\right)}{2 \, {\left(r^{6} + 3 \, r^{4} y^{2} + 3 \, r^{2} y^{4} + y^{6}\right)}} \\ \Gamma_{ \phantom{\, {\varphi}} \, {\tau} \, r }^{ \, {\varphi} \phantom{\, {\tau}} \phantom{\, r} } & = & \frac{r^{2} \frac{\partial\,\Delta_r}{\partial r} + y^{2} \frac{\partial\,\Delta_r}{\partial r} - 2 \, r \Delta_r\left(r\right) + 2 \, r \Delta_y\left(y\right)}{2 \, {\left(r^{4} \Delta_r\left(r\right) + 2 \, r^{2} y^{2} \Delta_r\left(r\right) + y^{4} \Delta_r\left(r\right)\right)}} \\ \Gamma_{ \phantom{\, {\varphi}} \, {\tau} \, y }^{ \, {\varphi} \phantom{\, {\tau}} \phantom{\, y} } & = & -\frac{2 \, y \Delta_r\left(r\right) - 2 \, y \Delta_y\left(y\right) + {\left(r^{2} + y^{2}\right)} \frac{\partial\,\Delta_y}{\partial y}}{2 \, {\left(r^{4} + 2 \, r^{2} y^{2} + y^{4}\right)} \Delta_y\left(y\right)} \\ \Gamma_{ \phantom{\, {\varphi}} \, r \, {\varphi} }^{ \, {\varphi} \phantom{\, r} \phantom{\, {\varphi}} } & = & \frac{r^{2} y^{2} \frac{\partial\,\Delta_r}{\partial r} + y^{4} \frac{\partial\,\Delta_r}{\partial r} + 2 \, r^{3} \Delta_r\left(r\right) - 2 \, r^{3} \Delta_y\left(y\right)}{2 \, {\left(r^{4} \Delta_r\left(r\right) + 2 \, r^{2} y^{2} \Delta_r\left(r\right) + y^{4} \Delta_r\left(r\right)\right)}} \\ \Gamma_{ \phantom{\, {\varphi}} \, y \, {\varphi} }^{ \, {\varphi} \phantom{\, y} \phantom{\, {\varphi}} } & = & -\frac{2 \, y^{3} \Delta_r\left(r\right) - 2 \, y^{3} \Delta_y\left(y\right) - {\left(r^{4} + r^{2} y^{2}\right)} \frac{\partial\,\Delta_y}{\partial y}}{2 \, {\left(r^{4} + 2 \, r^{2} y^{2} + y^{4}\right)} \Delta_y\left(y\right)} \end{array}\)