Numerical integration using R passing the function from ROOT
Author:
This notebook tutorial was automatically generated with ROOTBOOK-izer from the macro found in the ROOT repository on Tuesday, March 28, 2023 at 09:54 AM.
%%cpp -d
#include<TMath.h>
#include<TRInterface.h>
#include<Math/Integrator.h>
#include<TF1.h>
To integrate using R the function must be vectorized The idea is just to receive a vector like an argument,to evaluate every element saving the result in another vector and return the resultant vector.
%%cpp -d
std::vector<Double_t> BreitWignerVectorized(std::vector<Double_t> xx)
{
std::vector<Double_t> result(xx.size());
for(Int_t i=0;i<xx.size();i++)
{
result[i]=TMath::BreitWigner(xx[i]);
}
return result;
}
Definition of a helper function:
%%cpp -d
double BreitWignerWrap( double x){
return TMath::BreitWigner(x);
}
ROOT::R::TRInterface &r=ROOT::R::TRInterface::Instance();
r["BreitWigner"]=ROOT::R::TRFunctionExport(BreitWignerVectorized);
Double_t value=r.Eval("integrate(BreitWigner, lower = -2, upper = 2)$value");
std::cout.precision(18);
std::cout<<"Integral of the BreitWigner Function in the interval [-2, 2] R = "<<value<<std::endl;
ROOT::Math::WrappedFunction<> wf(BreitWignerWrap);
ROOT::Math::Integrator i(wf);
value=i.Integral(-2,2);
std::cout<<"Integral of the BreitWigner Function in the interval [-2, 2] MathMore = "<<value<<std::endl;
TF1 f1("BreitWigner","BreitWignerWrap(x)");
value=f1.Integral(-2,2);
std::cout<<"Integral of the BreitWigner Function in the interval [-2, 2] TF1 = "<<value<<std::endl;
infinite limits
value=r.Eval("integrate(BreitWigner, lower = -Inf, upper = Inf)$value");
std::cout<<"Integral of BreitWigner Function in the interval [-Inf, Inf] R = "<<value<<std::endl;