Comparison of MCMC and PLC in a multi-variate gaussian problem
This tutorial produces an N-dimensional multivariate Gaussian with a non-trivial covariance matrix. By default N=4 (called "dim").
A subset of these are considered parameters of interest. This problem is tractable analytically.
We use this mainly as a test of Markov Chain Monte Carlo and we compare the result to the profile likelihood ratio.
We use the proposal helper to create a customized proposal function for this problem.
For N=4 and 2 parameters of interest it takes about 10-20 seconds and the acceptance rate is 37%
Author: Kevin Belasco, Kyle Cranmer
This notebook tutorial was automatically generated with ROOTBOOK-izer from the macro found in the ROOT repository on Thursday, June 08, 2023 at 09:44 AM.
%%cpp -d
#include "RooGlobalFunc.h"
#include <stdlib.h>
#include "TMatrixDSym.h"
#include "RooMultiVarGaussian.h"
#include "RooArgList.h"
#include "RooRealVar.h"
#include "TH2F.h"
#include "TCanvas.h"
#include "RooAbsReal.h"
#include "RooFitResult.h"
#include "TStopwatch.h"
#include "RooStats/MCMCCalculator.h"
#include "RooStats/MetropolisHastings.h"
#include "RooStats/MarkovChain.h"
#include "RooStats/ConfInterval.h"
#include "RooStats/MCMCInterval.h"
#include "RooStats/MCMCIntervalPlot.h"
#include "RooStats/ModelConfig.h"
#include "RooStats/ProposalHelper.h"
#include "RooStats/ProposalFunction.h"
#include "RooStats/PdfProposal.h"
#include "RooStats/ProfileLikelihoodCalculator.h"
#include "RooStats/LikelihoodIntervalPlot.h"
#include "RooStats/LikelihoodInterval.h"
using namespace std;
using namespace RooFit;
using namespace RooStats;
Arguments are defined.
Int_t dim = 4;
Int_t nPOI = 2;
let's time this challenging example
TStopwatch t;
t.Start();
RooArgList xVec;
RooArgList muVec;
RooArgSet poi;
make the observable and means
Int_t i, j;
RooRealVar *x;
RooRealVar *mu_x;
for (i = 0; i < dim; i++) {
char *name = Form("x%d", i);
x = new RooRealVar(name, name, 0, -3, 3);
xVec.add(*x);
char *mu_name = Form("mu_x%d", i);
mu_x = new RooRealVar(mu_name, mu_name, 0, -2, 2);
muVec.add(*mu_x);
}
put them into the list of parameters of interest
for (i = 0; i < nPOI; i++) {
poi.add(*muVec.at(i));
}
make a covariance matrix that is all 1's
TMatrixDSym cov(dim);
for (i = 0; i < dim; i++) {
for (j = 0; j < dim; j++) {
if (i == j)
cov(i, j) = 3.;
else
cov(i, j) = 1.0;
}
}
now make the multivariate Gaussian
RooMultiVarGaussian mvg("mvg", "mvg", xVec, muVec, cov);
make a toy dataset
RooDataSet *data = mvg.generate(xVec, 100);
now create the model config for this problem
RooWorkspace *w = new RooWorkspace("MVG");
ModelConfig modelConfig(w);
modelConfig.SetPdf(mvg);
modelConfig.SetParametersOfInterest(poi);
Setup calculators
MCMC we want to setup an efficient proposal function using the covariance matrix from a fit to the data
std::unique_ptr<RooFitResult> fit{mvg.fitTo(*data, Save(true))};
ProposalHelper ph;
ph.SetVariables((RooArgSet &)fit->floatParsFinal());
ph.SetCovMatrix(fit->covarianceMatrix());
ph.SetUpdateProposalParameters(true);
ph.SetCacheSize(100);
ProposalFunction *pdfProp = ph.GetProposalFunction();
now create the calculator
MCMCCalculator mc(*data, modelConfig);
mc.SetConfidenceLevel(0.95);
mc.SetNumBurnInSteps(100);
mc.SetNumIters(10000);
mc.SetNumBins(50);
mc.SetProposalFunction(*pdfProp);
MCMCInterval *mcInt = mc.GetInterval();
RooArgList *poiList = mcInt->GetAxes();
now setup the profile likelihood calculator
ProfileLikelihoodCalculator plc(*data, modelConfig);
plc.SetConfidenceLevel(0.95);
LikelihoodInterval *plInt = (LikelihoodInterval *)plc.GetInterval();
make some plots
MCMCIntervalPlot mcPlot(*mcInt);
TCanvas *c1 = new TCanvas();
mcPlot.SetLineColor(kGreen);
mcPlot.SetLineWidth(2);
mcPlot.Draw();
LikelihoodIntervalPlot plPlot(plInt);
plPlot.Draw("same");
if (poiList->getSize() == 1) {
RooRealVar *p = (RooRealVar *)poiList->at(0);
Double_t ll = mcInt->LowerLimit(*p);
Double_t ul = mcInt->UpperLimit(*p);
cout << "MCMC interval: [" << ll << ", " << ul << "]" << endl;
}
if (poiList->getSize() == 2) {
RooRealVar *p0 = (RooRealVar *)poiList->at(0);
RooRealVar *p1 = (RooRealVar *)poiList->at(1);
TCanvas *scatter = new TCanvas();
Double_t ll = mcInt->LowerLimit(*p0);
Double_t ul = mcInt->UpperLimit(*p0);
cout << "MCMC interval on p0: [" << ll << ", " << ul << "]" << endl;
ll = mcInt->LowerLimit(*p1);
ul = mcInt->UpperLimit(*p1);
cout << "MCMC interval on p1: [" << ll << ", " << ul << "]" << endl;
// MCMC interval on p0: [-0.2, 0.6]
// MCMC interval on p1: [-0.2, 0.6]
mcPlot.DrawChainScatter(*p0, *p1);
scatter->Update();
}
t.Print();
Draw all canvases
gROOT->GetListOfCanvases()->Draw()