Perform a fit to a set of data with binomial errors like those derived from the division of two histograms. Three different fits are performed and compared:
The first two methods are biased while the last one is statistical correct. Running the script passing an integer value n larger than 1, n fits are performed and the bias are also shown. To run the script :
to show the bias performing 100 fits for 1000 events per "experiment"
root[0]: .x TestBinomial.C+
to show the bias performing 100 fits for 1000 events per "experiment"
.x TestBinomial.C+(100, 1000)
Author: Rene Brun
This notebook tutorial was automatically generated with ROOTBOOK-izer from the macro found in the ROOT repository on Monday, March 27, 2023 at 09:47 AM.
Arguments are defined.
int nloop = 100;
int nevts = 100;
bool plot = false;
bool debug = false;
int seed = 111;
gStyle->SetMarkerStyle(20);
gStyle->SetLineWidth(2.0);
gStyle->SetOptStat(11);
TObjArray hbiasNorm;
hbiasNorm.Add(new TH1D("h0Norm", "Bias Histogram fit",100,-5,5));
hbiasNorm.Add(new TH1D("h1Norm","Bias Binomial fit",100,-5,5));
TObjArray hbiasThreshold;
hbiasThreshold.Add(new TH1D("h0Threshold", "Bias Histogram fit",100,-5,5));
hbiasThreshold.Add(new TH1D("h1Threshold","Bias Binomial fit",100,-5,5));
TObjArray hbiasWidth;
hbiasWidth.Add(new TH1D("h0Width", "Bias Histogram fit",100,-5,5));
hbiasWidth.Add(new TH1D("h1Width","Bias Binomial fit",100,-5,5));
TH1D* hChisquared = new TH1D("hChisquared",
"#chi^{2} probability (Baker-Cousins)", 200, 0.0, 1.0);
TVirtualFitter::SetDefaultFitter("Minuit2");
ROOT::Math::IntegratorOneDimOptions::SetDefaultIntegrator("Gauss");
Note: in order to be able to use TH1::FillRandom() to generate pseudo-experiments, we use a trick: generate "selected" and "non-selected" samples independently. These are statistically independent and therefore can be safely added to yield the "before selection" sample.
Define (arbitrarily?) a distribution of input events. Here: assume a x^(-2) distribution. Boundaries: [10, 100].
double xmin =10, xmax = 100;
TH1D* hM2D = new TH1D("hM2D", "x^(-2) denominator distribution",
45, xmin, xmax);
TH1D* hM2N = new TH1D("hM2N", "x^(-2) numerator distribution",
45, xmin, xmax);
TH1D* hM2E = new TH1D("hM2E", "x^(-2) efficiency",
45, xmin, xmax);
TF1* fM2D = new TF1("fM2D", "(1-[0]/(1+exp(([1]-x)/[2])))/(x*x)",
xmin, xmax);
TF1* fM2N = new TF1("fM2N", "[0]/(1+exp(([1]-x)/[2]))/(x*x)",
xmin, xmax);
TF1* fM2Fit = new TF1("fM2Fit", "[0]/(1+exp(([1]-x)/[2]))",
xmin, xmax);
TF1* fM2Fit2 = 0;
TRandom3 rb(seed);
First try: use a single set of parameters. For each try, we need to find the overall normalization
double normalization = 0.80;
double threshold = 25.0;
double width = 5.0;
fM2D->SetParameter(0, normalization);
fM2D->SetParameter(1, threshold);
fM2D->SetParameter(2, width);
fM2N->SetParameter(0, normalization);
fM2N->SetParameter(1, threshold);
fM2N->SetParameter(2, width);
double integralN = fM2N->Integral(xmin, xmax);
double integralD = fM2D->Integral(xmin, xmax);
double fracN = integralN/(integralN+integralD);
int nevtsN = rb.Binomial(nevts, fracN);
int nevtsD = nevts - nevtsN;
std::cout << nevtsN << " " << nevtsD << std::endl;
gStyle->SetOptFit(1111);
32 68
generate many times to see the bias
for (int iloop = 0; iloop < nloop; ++iloop) {
// generate pseudo-experiments
hM2D->Reset();
hM2N->Reset();
hM2D->FillRandom(fM2D->GetName(), nevtsD);
hM2N->FillRandom(fM2N->GetName(), nevtsN);
hM2D->Add(hM2N);
// construct the "efficiency" histogram
hM2N->Sumw2();
hM2E->Divide(hM2N, hM2D, 1, 1, "b");
// Fit twice, using the same fit function.
// In the first (standard) fit, initialize to (arbitrary) values.
// In the second fit, use the results from the first fit (this
// makes it easier for the fit -- but the purpose here is not to
// show how easy or difficult it is to obtain results, but whether
// the CORRECT results are obtained or not!).
fM2Fit->SetParameter(0, 0.5);
fM2Fit->SetParameter(1, 15.0);
fM2Fit->SetParameter(2, 2.0);
fM2Fit->SetParError(0, 0.1);
fM2Fit->SetParError(1, 1.0);
fM2Fit->SetParError(2, 0.2);
TH1 * hf = fM2Fit->GetHistogram();
// std::cout << "Function values " << std::endl;
// for (int i = 1; i <= hf->GetNbinsX(); ++i)
// std::cout << hf->GetBinContent(i) << " ";
// std::cout << std::endl;
TCanvas* cEvt;
if (plot) {
cEvt = new TCanvas(Form("cEnv%d",iloop),
Form("plots for experiment %d", iloop),
1000, 600);
cEvt->Divide(1,2);
cEvt->cd(1);
hM2D->DrawCopy("HIST");
hM2N->SetLineColor(kRed);
hM2N->DrawCopy("HIST SAME");
cEvt->cd(2);
}
for (int fit = 0; fit < 2; ++fit) {
int status = 0;
switch (fit) {
case 0:
{
// TVirtualPad * pad = gPad;
// new TCanvas();
// fM2Fit->Draw();
// gPad = pad;
TString optFit = "RN";
if (debug) optFit += TString("SV");
TFitResultPtr res = hM2E->Fit(fM2Fit, optFit);
if (plot) {
hM2E->DrawCopy("E");
fM2Fit->SetLineColor(kBlue);
fM2Fit->DrawCopy("SAME");
}
if (debug) res->Print();
status = res;
break;
}
case 1:
{
// if (fM2Fit2) delete fM2Fit2;
// fM2Fit2 = dynamic_cast<TF1*>(fM2Fit->Clone("fM2Fit2"));
fM2Fit2 = fM2Fit; // do not clone/copy the function
if (fM2Fit2->GetParameter(0) >= 1.0)
fM2Fit2->SetParameter(0, 0.95);
fM2Fit2->SetParLimits(0, 0.0, 1.0);
// TVirtualPad * pad = gPad;
// new TCanvas();
// fM2Fit2->Draw();
// gPad = pad;
TBinomialEfficiencyFitter bef(hM2N, hM2D);
TString optFit = "RI S";
if (debug) optFit += TString("V");
TFitResultPtr res = bef.Fit(fM2Fit2,optFit);
status = res;
if (status !=0) {
std::cerr << "Error performing binomial efficiency fit, result = "
<< status << std::endl;
res->Print();
continue;
}
if (plot) {
fM2Fit2->SetLineColor(kRed);
fM2Fit2->DrawCopy("SAME");
bool confint = (status == 0);
if (confint) {
// compute confidence interval on fitted function
auto htemp = fM2Fit2->GetHistogram();
ROOT::Fit::BinData xdata;
ROOT::Fit::FillData(xdata, fM2Fit2->GetHistogram() );
TGraphErrors gr(fM2Fit2->GetHistogram() );
res->GetConfidenceIntervals(xdata, gr.GetEY(), 0.68, false);
gr.SetFillColor(6);
gr.SetFillStyle(3005);
gr.DrawClone("4 same");
}
}
if (debug) {
res->Print();
}
}
}
if (status != 0) break;
double fnorm = fM2Fit->GetParameter(0);
double enorm = fM2Fit->GetParError(0);
double fthreshold = fM2Fit->GetParameter(1);
double ethreshold = fM2Fit->GetParError(1);
double fwidth = fM2Fit->GetParameter(2);
double ewidth = fM2Fit->GetParError(2);
if (fit == 1) {
fnorm = fM2Fit2->GetParameter(0);
enorm = fM2Fit2->GetParError(0);
fthreshold = fM2Fit2->GetParameter(1);
ethreshold = fM2Fit2->GetParError(1);
fwidth = fM2Fit2->GetParameter(2);
ewidth = fM2Fit2->GetParError(2);
hChisquared->Fill(fM2Fit2->GetProb());
}
TH1D* h = dynamic_cast<TH1D*>(hbiasNorm[fit]);
h->Fill((fnorm-normalization)/enorm);
h = dynamic_cast<TH1D*>(hbiasThreshold[fit]);
h->Fill((fthreshold-threshold)/ethreshold);
h = dynamic_cast<TH1D*>(hbiasWidth[fit]);
h->Fill((fwidth-width)/ewidth);
}
}
TCanvas* c1 = new TCanvas("c1",
"Efficiency fit biases",10,10,1000,800);
c1->Divide(2,2);
TH1D *h0, *h1;
c1->cd(1);
h0 = dynamic_cast<TH1D*>(hbiasNorm[0]);
h0->Draw("HIST");
h1 = dynamic_cast<TH1D*>(hbiasNorm[1]);
h1->SetLineColor(kRed);
h1->Draw("HIST SAMES");
TLegend* l1 = new TLegend(0.1, 0.75, 0.5, 0.9,
"plateau parameter", "ndc");
l1->AddEntry(h0, Form("histogram: mean = %4.2f RMS = \
%4.2f", h0->GetMean(), h0->GetRMS()), "l");
l1->AddEntry(h1, Form("binomial : mean = %4.2f RMS = \
%4.2f", h1->GetMean(), h1->GetRMS()), "l");
l1->Draw();
c1->cd(2);
h0 = dynamic_cast<TH1D*>(hbiasThreshold[0]);
h0->Draw("HIST");
h1 = dynamic_cast<TH1D*>(hbiasThreshold[1]);
h1->SetLineColor(kRed);
h1->Draw("HIST SAMES");
TLegend* l2 = new TLegend(0.1, 0.75, 0.5, 0.9,
"threshold parameter", "ndc");
l2->AddEntry(h0, Form("histogram: mean = %4.2f RMS = \
%4.2f", h0->GetMean(), h0->GetRMS()), "l");
l2->AddEntry(h1, Form("binomial : mean = %4.2f RMS = \
%4.2f", h1->GetMean(), h1->GetRMS()), "l");
l2->Draw();
c1->cd(3);
h0 = dynamic_cast<TH1D*>(hbiasWidth[0]);
h0->Draw("HIST");
h1 = dynamic_cast<TH1D*>(hbiasWidth[1]);
h1->SetLineColor(kRed);
h1->Draw("HIST SAMES");
TLegend* l3 = new TLegend(0.1, 0.75, 0.5, 0.9, "width parameter", "ndc");
l3->AddEntry(h0, Form("histogram: mean = %4.2f RMS = \
%4.2f", h0->GetMean(), h0->GetRMS()), "l");
l3->AddEntry(h1, Form("binomial : mean = %4.2f RMS = \
%4.2f", h1->GetMean(), h1->GetRMS()), "l");
l3->Draw();
c1->cd(4);
hChisquared->Draw("HIST");
**************************************** Minimizer is Minuit2 / Migrad Chi2 = 0.350714 NDf = 3 Edm = 1.27001e-06 NCalls = 81 p0 = 0.694132 +/- 0.210029 p1 = 19.3471 +/- 5.85483 p2 = 5.2245 +/- 5.11013 **************************************** Minimizer is Minuit2 / Migrad MinFCN = 14.3081 Chi2 = 28.6162 NDf = 21 Edm = 4.11934e-08 NCalls = 91 p0 = 0.822966 +/- 0.0807557 (limited) p1 = 21.9819 +/- 2.14579 p2 = 3.36105 +/- 1.05866 **************************************** Minimizer is Minuit2 / Migrad Chi2 = 1.64738 NDf = 5 Edm = 1.01171e-06 NCalls = 137 p0 = 0.677329 +/- 0.135567 (limited) p1 = 15.5028 +/- 4.11118 p2 = 4.10441 +/- 2.77044 **************************************** Minimizer is Minuit2 / Migrad MinFCN = 19.363 Chi2 = 38.7261 NDf = 25 Edm = 9.40378e-08 NCalls = 80 p0 = 0.778188 +/- 0.0815568 (limited) p1 = 23.7948 +/- 2.21356 p2 = 4.58769 +/- 1.24153 **************************************** Minimizer is Minuit2 / Migrad Chi2 = 0.928456 NDf = 6 Edm = 1.46917e-08 NCalls = 75 p0 = 0.578806 +/- 0.128412 (limited) p1 = 19.8914 +/- 2.83678 p2 = 3.39323 +/- 1.96156 **************************************** Minimizer is Minuit2 / Migrad MinFCN = 11.7144 Chi2 = 23.4287 NDf = 23 Edm = 7.44806e-08 NCalls = 73 p0 = 0.740898 +/- 0.079731 (limited) p1 = 21.5953 +/- 2.12198 p2 = 2.98575 +/- 1.16957 **************************************** Minimizer is Minuit2 / Migrad Chi2 = 2.56551 NDf = 7 Edm = 1.19556e-08 NCalls = 109 p0 = 0.57261 +/- 0.16552 (limited) p1 = 21.4104 +/- 5.10611 p2 = 5.58786 +/- 3.30889 **************************************** Minimizer is Minuit2 / Migrad MinFCN = 12.7185 Chi2 = 25.4369 NDf = 23 Edm = 7.33141e-08 NCalls = 74 p0 = 0.861581 +/- 0.082929 (limited) p1 = 28.1952 +/- 3.60519 p2 = 7.31775 +/- 2.14695 **************************************** Minimizer is Minuit2 / Migrad Chi2 = 7.37095 NDf = 10 Edm = 1.54804e-06 NCalls = 87 p0 = 0.667689 +/- 0.152841 (limited) p1 = 24.0146 +/- 2.40617 p2 = 3.63777 +/- 1.74672 **************************************** Minimizer is Minuit2 / Migrad MinFCN = 9.05615 Chi2 = 18.1123 NDf = 23 Edm = 2.30749e-07 NCalls = 71 p0 = 0.842186 +/- 0.0921999 (limited) p1 = 26.3581 +/- 2.99562 p2 = 5.28694 +/- 1.78724 **************************************** Minimizer is Minuit2 / Migrad Chi2 = 0.747776 NDf = 6 Edm = 2.75121e-06 NCalls = 76 p0 = 0.651877 +/- 0.155245 (limited) p1 = 18.9865 +/- 2.68321 p2 = 2.68989 +/- 1.28756 **************************************** Minimizer is Minuit2 / Migrad MinFCN = 15.9733 Chi2 = 31.9466 NDf = 26 Edm = 5.1941e-07 NCalls = 62 p0 = 0.794215 +/- 0.0873938 (limited) p1 = 25.0012 +/- 3.13976 p2 = 5.16842 +/- 1.65839 **************************************** Minimizer is Minuit2 / Migrad Chi2 = 0.433039 NDf = 4 Edm = 3.07902e-07 NCalls = 104 p0 = 0.500967 +/- 0.254652 (limited) p1 = 19.4199 +/- 9.30614 p2 = 6.46947 +/- 8.16624 **************************************** Minimizer is Minuit2 / Migrad MinFCN = 17.807 Chi2 = 35.614 NDf = 24 Edm = 5.43825e-09 NCalls = 98 p0 = 0.748311 +/- 0.0866402 (limited) p1 = 22.4098 +/- 2.06254 p2 = 3.36062 +/- 0.902421 **************************************** Minimizer is Minuit2 / Migrad Chi2 = 4.49197 NDf = 9 Edm = 4.04441e-06 NCalls = 113 p0 = 0.623236 +/- 0.107197 (limited) p1 = 20.8129 +/- 1.0507 p2 = 1.22179 +/- 1.09027 **************************************** Minimizer is Minuit2 / Migrad MinFCN = 10.5454 Chi2 = 21.0907 NDf = 22 Edm = 1.84998e-08 NCalls = 101 p0 = 0.7513 +/- 0.0923543 (limited) p1 = 23.3695 +/- 3.23382 p2 = 3.90837 +/- 1.83804 **************************************** Minimizer is Minuit2 / Migrad Chi2 = 2.54966 NDf = 6 Edm = 1.48922e-07 NCalls = 93 p0 = 0.382687 +/- 0.226798 (limited) p1 = 18.0539 +/- 6.38962 p2 = 3.0464 +/- 5.58751 **************************************** Minimizer is Minuit2 / Migrad MinFCN = 7.09023 Chi2 = 14.1805 NDf = 22 Edm = 1.88451e-08 NCalls = 149 p0 = 1 +/- 0.132534 (limited) p1 = 29.3106 +/- 2.29361 p2 = 6.14658 +/- 1.45195 **************************************** Minimizer is Minuit2 / Migrad Chi2 = 1.46531 NDf = 7 Edm = 2.36369e-06 NCalls = 90 p0 = 0.575891 +/- 0.187613 (limited) p1 = 17.6126 +/- 7.68638 p2 = 2.99185 +/- 6.18408 **************************************** Minimizer is Minuit2 / Migrad MinFCN = 15.9432 Chi2 = 31.8864 NDf = 23 Edm = 9.70221e-07 NCalls = 76 p0 = 0.765903 +/- 0.0805873 (limited) p1 = 23.9216 +/- 2.50269 p2 = 4.42272 +/- 1.34342 **************************************** Minimizer is Minuit2 / Migrad Chi2 = 3.31728 NDf = 6 Edm = 8.18927e-07 NCalls = 64 p0 = 0.59853 +/- 0.124912 (limited) p1 = 17.9048 +/- 3.49062 p2 = 3.52241 +/- 2.09942 **************************************** Minimizer is Minuit2 / Migrad MinFCN = 21.6362 Chi2 = 43.2724 NDf = 26 Edm = 2.82218e-06 NCalls = 80 p0 = 0.64315 +/- 0.0777258 (limited) p1 = 19.2211 +/- 1.75093 p2 = 2.29991 +/- 0.890814 **************************************** Minimizer is Minuit2 / Migrad Chi2 = 0.413866 NDf = 6 Edm = 5.34616e-09 NCalls = 82 p0 = 0.654352 +/- 0.198145 (limited) p1 = 20.6178 +/- 3.66715 p2 = 4.03019 +/- 2.20627 **************************************** Minimizer is Minuit2 / Migrad MinFCN = 9.09822 Chi2 = 18.1964 NDf = 19 Edm = 2.73834e-07 NCalls = 71 p0 = 0.809718 +/- 0.0969513 (limited) p1 = 22.5716 +/- 2.36934 p2 = 3.95798 +/- 1.33784 **************************************** Minimizer is Minuit2 / Migrad Chi2 = 1.21002 NDf = 4 Edm = 2.90565e-08 NCalls = 82 p0 = 0.651685 +/- 0.159188 (limited) p1 = 19.3369 +/- 2.66645 p2 = 2.81842 +/- 2.20413 **************************************** Minimizer is Minuit2 / Migrad MinFCN = 16.871 Chi2 = 33.7421 NDf = 24 Edm = 9.78264e-08 NCalls = 73 p0 = 0.780957 +/- 0.0794324 (limited) p1 = 22.7262 +/- 1.91125 p2 = 2.78007 +/- 0.877452 **************************************** Minimizer is Minuit2 / Migrad Chi2 = 0.752979 NDf = 7 Edm = 5.34806e-06 NCalls = 101 p0 = 0.643852 +/- 0.170146 (limited) p1 = 21.01 +/- 4.32394 p2 = 5.36976 +/- 3.12567 **************************************** Minimizer is Minuit2 / Migrad MinFCN = 12.9202 Chi2 = 25.8404 NDf = 23 Edm = 1.28006e-08 NCalls = 100 p0 = 0.794265 +/- 0.0958159 (limited) p1 = 24.1679 +/- 3.59479 p2 = 4.72785 +/- 2.02176 **************************************** Minimizer is Minuit2 / Migrad Chi2 = 2.5161 NDf = 8 Edm = 6.68524e-10 NCalls = 61 p0 = 0.628793 +/- 0.103749 (limited) p1 = 17.4724 +/- 2.12101 p2 = 2.59351 +/- 1.42575 **************************************** Minimizer is Minuit2 / Migrad MinFCN = 17.7487 Chi2 = 35.4974 NDf = 24 Edm = 4.85421e-08 NCalls = 84 p0 = 0.739601 +/- 0.111147 (limited) p1 = 23.7592 +/- 3.70376 p2 = 4.88756 +/- 1.97092 **************************************** Minimizer is Minuit2 / Migrad Chi2 = 1.27043 NDf = 8 Edm = 6.23845e-06 NCalls = 72 p0 = 0.561127 +/- 0.138134 (limited) p1 = 18.1601 +/- 3.22498 p2 = 3.50338 +/- 1.84312 **************************************** Minimizer is Minuit2 / Migrad MinFCN = 10.3177 Chi2 = 20.6353 NDf = 25 Edm = 4.17867e-06 NCalls = 74 p0 = 0.803115 +/- 0.0973933 (limited) p1 = 24.5223 +/- 3.6204 p2 = 6.04914 +/- 2.15838 **************************************** Minimizer is Minuit2 / Migrad Chi2 = 2.84972 NDf = 8 Edm = 1.39524e-06 NCalls = 90 p0 = 0.693419 +/- 0.285373 (limited) p1 = 24.7834 +/- 7.96871 p2 = 5.95505 +/- 3.88805 **************************************** Minimizer is Minuit2 / Migrad MinFCN = 14.2763 Chi2 = 28.5526 NDf = 27 Edm = 1.16259e-07 NCalls = 71 p0 = 0.81816 +/- 0.0960388 (limited) p1 = 27.5551 +/- 3.48223 p2 = 5.91219 +/- 1.84521 **************************************** Minimizer is Minuit2 / Migrad Chi2 = 3.67016 NDf = 5 Edm = 1.80141e-06 NCalls = 82 p0 = 0.502645 +/- 0.176121 (limited) p1 = 20.1539 +/- 2.79976 p2 = 2.70329 +/- 1.65981 **************************************** Minimizer is Minuit2 / Migrad MinFCN = 9.70246 Chi2 = 19.4049 NDf = 21 Edm = 4.83549e-06 NCalls = 68 p0 = 0.862268 +/- 0.0732858 (limited) p1 = 22.9201 +/- 1.83831 p2 = 2.68862 +/- 0.964839 **************************************** Invalid FitResult (status = 3 ) **************************************** Minimizer is Minuit2 / Migrad Chi2 = 0.936088 NDf = 1 Edm = 0.106873 NCalls = 83 p0 = 0.41816 +/- 0.669502 (limited) p1 = 18.3049 +/- 3.25491 p2 = 3.06774 +/- 40.715 **************************************** Minimizer is Minuit2 / Migrad Chi2 = 3.77203 NDf = 8 Edm = 1.56279e-05 NCalls = 84 p0 = 0.642277 +/- 0.195607 (limited) p1 = 22.9222 +/- 4.97062 p2 = 5.05681 +/- 2.69739 **************************************** Minimizer is Minuit2 / Migrad MinFCN = 16.8304 Chi2 = 33.6608 NDf = 24 Edm = 5.58496e-07 NCalls = 72 p0 = 0.62357 +/- 0.0902387 (limited) p1 = 20.2778 +/- 2.24768 p2 = 2.93813 +/- 1.24803 **************************************** Minimizer is Minuit2 / Migrad Chi2 = 0.47406 NDf = 6 Edm = 1.7448e-06 NCalls = 88 p0 = 0.635811 +/- 0.173792 (limited) p1 = 21.0478 +/- 3.90109 p2 = 3.91609 +/- 2.85302 **************************************** Minimizer is Minuit2 / Migrad MinFCN = 10.7469 Chi2 = 21.4938 NDf = 21 Edm = 2.82067e-07 NCalls = 90 p0 = 0.761502 +/- 0.0976432 (limited) p1 = 23.1813 +/- 2.58651 p2 = 3.04135 +/- 1.22248 **************************************** Minimizer is Minuit2 / Migrad Chi2 = 2.39556 NDf = 8 Edm = 4.51695e-08 NCalls = 81 p0 = 0.564008 +/- 0.188334 (limited) p1 = 19.2305 +/- 5.64705 p2 = 4.00431 +/- 3.2294 **************************************** Minimizer is Minuit2 / Migrad MinFCN = 16.5802 Chi2 = 33.1604 NDf = 27 Edm = 2.38499e-09 NCalls = 73 p0 = 0.670525 +/- 0.116925 (limited) p1 = 23.7189 +/- 4.27475 p2 = 5.77511 +/- 2.44309 **************************************** Minimizer is Minuit2 / Migrad Chi2 = 2.71864 NDf = 3 Edm = 2.02651e-07 NCalls = 84 p0 = 0.430955 +/- 0.103386 (limited) p1 = 15.3556 +/- 1.58614 p2 = 1.18646 +/- 1.05279 **************************************** Minimizer is Minuit2 / Migrad MinFCN = 14.442 Chi2 = 28.884 NDf = 25 Edm = 8.50827e-07 NCalls = 110 p0 = 0.931083 +/- 0.142888 (limited) p1 = 27.3321 +/- 5.16548 p2 = 5.43478 +/- 2.66681 **************************************** Minimizer is Minuit2 / Migrad Chi2 = 3.91497 NDf = 3 Edm = 9.71484e-06 NCalls = 172 p0 = 0.999991 +/- 0.973989 (limited) p1 = 26.3679 +/- 4.16357 p2 = 10.2085 +/- 7.97289 **************************************** Minimizer is Minuit2 / Migrad MinFCN = 13.7743 Chi2 = 27.5485 NDf = 26 Edm = 4.38758e-07 NCalls = 97 p0 = 0.94497 +/- 0.0525858 (limited) p1 = 28.5699 +/- 2.31631 p2 = 4.52203 +/- 1.14841 **************************************** Minimizer is Minuit2 / Migrad Chi2 = 3.69474 NDf = 4 Edm = 1.0286e-07 NCalls = 124 p0 = 0.566565 +/- 0.300627 (limited) p1 = 22.9958 +/- 7.83199 p2 = 6.59909 +/- 5.25595 **************************************** Minimizer is Minuit2 / Migrad MinFCN = 12.1694 Chi2 = 24.3388 NDf = 24 Edm = 1.18132e-06 NCalls = 93 p0 = 0.902749 +/- 0.0643623 (limited) p1 = 23.1006 +/- 1.54526 p2 = 3.46387 +/- 0.844882 **************************************** Minimizer is Minuit2 / Migrad Chi2 = 1.01429 NDf = 10 Edm = 2.60252e-06 NCalls = 94 p0 = 0.610818 +/- 0.175926 (limited) p1 = 23.3058 +/- 5.77903 p2 = 5.09666 +/- 2.59915 **************************************** Minimizer is Minuit2 / Migrad MinFCN = 7.14727 Chi2 = 14.2945 NDf = 19 Edm = 1.36278e-07 NCalls = 95 p0 = 0.900785 +/- 0.229879 (limited) p1 = 28.3188 +/- 10.6921 p2 = 6.84773 +/- 5.79821 **************************************** Minimizer is Minuit2 / Migrad Chi2 = 3.63097 NDf = 7 Edm = 2.77767e-07 NCalls = 123 p0 = 0.643028 +/- 0.225348 (limited) p1 = 21.4306 +/- 4.46994 p2 = 3.95327 +/- 2.04398 **************************************** Minimizer is Minuit2 / Migrad MinFCN = 13.9433 Chi2 = 27.8865 NDf = 21 Edm = 3.43187e-07 NCalls = 63 p0 = 0.683396 +/- 0.104286 (limited) p1 = 21.9331 +/- 2.48361 p2 = 3.36642 +/- 1.25116 **************************************** Minimizer is Minuit2 / Migrad Chi2 = 1.7669 NDf = 7 Edm = 1.75691e-07 NCalls = 98 p0 = 0.73821 +/- 0.220641 (limited) p1 = 23.671 +/- 5.18271 p2 = 5.53649 +/- 2.72352 **************************************** Minimizer is Minuit2 / Migrad MinFCN = 9.70486 Chi2 = 19.4097 NDf = 21 Edm = 8.73736e-08 NCalls = 108 p0 = 1 +/- 0.129925 (limited) p1 = 30.7473 +/- 2.87702 p2 = 8.76457 +/- 1.97452 **************************************** Minimizer is Minuit2 / Migrad Chi2 = 2.70826 NDf = 8 Edm = 5.00596e-07 NCalls = 106 p0 = 0.662591 +/- 0.352545 (limited) p1 = 24.2783 +/- 12.3384 p2 = 7.60846 +/- 6.66009 **************************************** Minimizer is Minuit2 / Migrad MinFCN = 11.7754 Chi2 = 23.5509 NDf = 22 Edm = 8.43281e-07 NCalls = 108 p0 = 0.865161 +/- 0.102972 (limited) p1 = 28.7874 +/- 2.92519 p2 = 5.66109 +/- 1.45554 **************************************** Minimizer is Minuit2 / Migrad Chi2 = 9.74855 NDf = 4 Edm = 3.46464e-07 NCalls = 124 p0 = 0.606488 +/- 0.231103 (limited) p1 = 22.9147 +/- 5.11615 p2 = 4.88595 +/- 2.18611 **************************************** Minimizer is Minuit2 / Migrad MinFCN = 14.5599 Chi2 = 29.1197 NDf = 26 Edm = 5.37183e-08 NCalls = 89 p0 = 0.893177 +/- 0.0654554 (limited) p1 = 26.3026 +/- 1.88872 p2 = 3.66616 +/- 0.981145 **************************************** Minimizer is Minuit2 / Migrad Chi2 = 3.10119 NDf = 5 Edm = 3.71723e-07 NCalls = 234 p0 = 0.999998 +/- 0.501156 (limited) p1 = 28.5973 +/- 4.11085 p2 = 8.15931 +/- 3.01069 **************************************** Minimizer is Minuit2 / Migrad MinFCN = 17.676 Chi2 = 35.352 NDf = 25 Edm = 4.23826e-07 NCalls = 105 p0 = 0.691753 +/- 0.102495 (limited) p1 = 22.3455 +/- 2.89145 p2 = 5.80589 +/- 1.86419 **************************************** Minimizer is Minuit2 / Migrad Chi2 = 2.78024 NDf = 7 Edm = 1.5102e-06 NCalls = 82 p0 = 0.65308 +/- 0.206386 (limited) p1 = 23.0571 +/- 4.95138 p2 = 4.86356 +/- 2.47873 **************************************** Minimizer is Minuit2 / Migrad MinFCN = 9.65754 Chi2 = 19.3151 NDf = 24 Edm = 2.10929e-06 NCalls = 104 p0 = 1 +/- 0.130796 (limited) p1 = 31.0119 +/- 2.70979 p2 = 7.55857 +/- 1.6782 **************************************** Minimizer is Minuit2 / Migrad Chi2 = 3.05436 NDf = 5 Edm = 1.66356e-05 NCalls = 297 p0 = 0.999547 +/- 0.735933 (limited) p1 = 47.3138 +/- 36.6961 p2 = 43.5419 +/- 61.6394 **************************************** Minimizer is Minuit2 / Migrad MinFCN = 15.551 Chi2 = 31.1019 NDf = 24 Edm = 3.03617e-07 NCalls = 151 p0 = 1 +/- 0.118805 (limited) p1 = 32.246 +/- 2.88351 p2 = 8.35109 +/- 1.76088 **************************************** Minimizer is Minuit2 / Migrad Chi2 = 0.139804 NDf = 2 Edm = 1.06491e-06 NCalls = 91 p0 = 0.660157 +/- 0.258707 (limited) p1 = 19.2592 +/- 7.6936 p2 = 6.44669 +/- 4.78428 **************************************** Minimizer is Minuit2 / Migrad MinFCN = 23.3673 Chi2 = 46.7347 NDf = 30 Edm = 1.84329e-06 NCalls = 94 p0 = 0.74715 +/- 0.110543 (limited) p1 = 28.1656 +/- 7.86858 p2 = 8.19547 +/- 5.07211 **************************************** Minimizer is Minuit2 / Migrad Chi2 = 2.55321 NDf = 7 Edm = 5.89829e-06 NCalls = 89 p0 = 0.643594 +/- 0.194962 (limited) p1 = 21.9893 +/- 5.24123 p2 = 5.90243 +/- 2.90213 **************************************** Minimizer is Minuit2 / Migrad MinFCN = 13.6972 Chi2 = 27.3944 NDf = 22 Edm = 5.81988e-08 NCalls = 86 p0 = 0.788092 +/- 0.0892723 (limited) p1 = 25.0025 +/- 2.64366 p2 = 4.90379 +/- 1.42976 **************************************** Minimizer is Minuit2 / Migrad Chi2 = 2.36128 NDf = 6 Edm = 6.99629e-07 NCalls = 88 p0 = 0.560279 +/- 0.13121 (limited) p1 = 19.8526 +/- 3.03421 p2 = 2.47661 +/- 2.23047 **************************************** Minimizer is Minuit2 / Migrad MinFCN = 16.199 Chi2 = 32.398 NDf = 22 Edm = 2.10103e-06 NCalls = 62 p0 = 0.693765 +/- 0.0810703 (limited) p1 = 20.5818 +/- 1.69818 p2 = 3.08945 +/- 0.908341 **************************************** Minimizer is Minuit2 / Migrad Chi2 = 1.33423 NDf = 7 Edm = 2.89896e-06 NCalls = 102 p0 = 0.564562 +/- 0.203287 (limited) p1 = 25.8413 +/- 9.79483 p2 = 8.35761 +/- 6.07925 **************************************** Minimizer is Minuit2 / Migrad MinFCN = 12.5314 Chi2 = 25.0627 NDf = 26 Edm = 1.61089e-07 NCalls = 97 p0 = 0.835727 +/- 0.083548 (limited) p1 = 30.5594 +/- 4.27567 p2 = 6.90591 +/- 2.2602 **************************************** Minimizer is Minuit2 / Migrad Chi2 = 1.74047 NDf = 7 Edm = 7.04231e-07 NCalls = 135 p0 = 0.594764 +/- 0.187954 (limited) p1 = 25.3877 +/- 8.57244 p2 = 6.52667 +/- 4.25157 **************************************** Minimizer is Minuit2 / Migrad MinFCN = 16.4051 Chi2 = 32.8102 NDf = 26 Edm = 3.55957e-06 NCalls = 78 p0 = 0.710631 +/- 0.082398 (limited) p1 = 21.9892 +/- 2.24718 p2 = 2.94004 +/- 1.13284 **************************************** Minimizer is Minuit2 / Migrad Chi2 = 0.310648 NDf = 7 Edm = 2.45348e-06 NCalls = 169 p0 = 0.539725 +/- 0.760718 (limited) p1 = 12.9065 +/- 72.7676 p2 = 22.8828 +/- 100.306 **************************************** Minimizer is Minuit2 / Migrad MinFCN = 13.4706 Chi2 = 26.9413 NDf = 25 Edm = 2.38853e-08 NCalls = 153 p0 = 0.812768 +/- 0.131071 (limited) p1 = 24.5484 +/- 4.86163 p2 = 5.70675 +/- 2.6421 **************************************** Minimizer is Minuit2 / Migrad Chi2 = 2.52738 NDf = 10 Edm = 1.515e-08 NCalls = 119 p0 = 0.631088 +/- 0.21992 (limited) p1 = 26.5773 +/- 9.03434 p2 = 8.9826 +/- 4.83446 **************************************** Minimizer is Minuit2 / Migrad MinFCN = 11.3338 Chi2 = 22.6677 NDf = 23 Edm = 1.90162e-08 NCalls = 71 p0 = 0.745037 +/- 0.103424 (limited) p1 = 25.6472 +/- 3.41282 p2 = 7.04987 +/- 2.05878 **************************************** Minimizer is Minuit2 / Migrad Chi2 = 2.51398 NDf = 6 Edm = 6.94471e-07 NCalls = 84 p0 = 0.484246 +/- 0.226988 (limited) p1 = 18.2432 +/- 5.68591 p2 = 3.93586 +/- 3.23302 **************************************** Minimizer is Minuit2 / Migrad MinFCN = 10.8867 Chi2 = 21.7734 NDf = 23 Edm = 3.78138e-08 NCalls = 84 p0 = 0.836954 +/- 0.108736 (limited) p1 = 24.375 +/- 3.34157 p2 = 6.16582 +/- 2.0379 **************************************** Minimizer is Minuit2 / Migrad Chi2 = 0.946468 NDf = 5 Edm = 5.45857e-06 NCalls = 74 p0 = 0.584615 +/- 0.133896 (limited) p1 = 19.3728 +/- 3.81107 p2 = 4.20495 +/- 2.53748 **************************************** Minimizer is Minuit2 / Migrad MinFCN = 12.0156 Chi2 = 24.0312 NDf = 23 Edm = 1.40064e-06 NCalls = 76 p0 = 0.880019 +/- 0.0911312 (limited) p1 = 28.963 +/- 3.37154 p2 = 6.13976 +/- 1.63654 **************************************** Minimizer is Minuit2 / Migrad Chi2 = 5.46724 NDf = 8 Edm = 1.55331e-06 NCalls = 99 p0 = 0.763745 +/- 0.233374 (limited) p1 = 26.3444 +/- 5.03855 p2 = 6.07972 +/- 2.87905 **************************************** Minimizer is Minuit2 / Migrad MinFCN = 7.09585 Chi2 = 14.1917 NDf = 22 Edm = 2.55685e-07 NCalls = 100 p0 = 1 +/- 0.137512 (limited) p1 = 31.2245 +/- 2.9769 p2 = 8.50085 +/- 1.97863 **************************************** Minimizer is Minuit2 / Migrad Chi2 = 0.716283 NDf = 7 Edm = 1.89199e-06 NCalls = 85 p0 = 0.422768 +/- 0.179544 (limited) p1 = 17.3878 +/- 6.43713 p2 = 3.05887 +/- 4.49587 **************************************** Minimizer is Minuit2 / Migrad MinFCN = 14.7289 Chi2 = 29.4577 NDf = 25 Edm = 2.3758e-07 NCalls = 81 p0 = 0.74917 +/- 0.103618 (limited) p1 = 24.7084 +/- 3.46816 p2 = 4.65745 +/- 1.83133 **************************************** Minimizer is Minuit2 / Migrad Chi2 = 6.40375 NDf = 8 Edm = 5.62321e-07 NCalls = 104 p0 = 0.507615 +/- 0.198193 (limited) p1 = 22.2924 +/- 5.65071 p2 = 4.8117 +/- 2.67857 **************************************** Minimizer is Minuit2 / Migrad MinFCN = 14.2056 Chi2 = 28.4112 NDf = 25 Edm = 4.55206e-07 NCalls = 72 p0 = 0.756894 +/- 0.0844728 (limited) p1 = 22.7347 +/- 2.14529 p2 = 3.73044 +/- 1.05431 **************************************** Minimizer is Minuit2 / Migrad Chi2 = 3.18171 NDf = 9 Edm = 5.5664e-07 NCalls = 83 p0 = 0.694498 +/- 0.134559 (limited) p1 = 21.5399 +/- 2.86559 p2 = 3.46906 +/- 1.42287 **************************************** Minimizer is Minuit2 / Migrad MinFCN = 14.71 Chi2 = 29.4201 NDf = 29 Edm = 1.37273e-09 NCalls = 63 p0 = 0.708238 +/- 0.0850928 (limited) p1 = 21.4168 +/- 2.75995 p2 = 3.18025 +/- 1.28681 **************************************** Minimizer is Minuit2 / Migrad Chi2 = 3.13918 NDf = 6 Edm = 4.11187e-06 NCalls = 101 p0 = 0.725096 +/- 0.145408 (limited) p1 = 25.2372 +/- 3.82188 p2 = 4.88315 +/- 1.80529 **************************************** Minimizer is Minuit2 / Migrad MinFCN = 9.52542 Chi2 = 19.0508 NDf = 25 Edm = 7.91505e-08 NCalls = 72 p0 = 0.879126 +/- 0.0778689 (limited) p1 = 29.5534 +/- 2.95061 p2 = 5.14138 +/- 1.41346 **************************************** Minimizer is Minuit2 / Migrad Chi2 = 3.15774 NDf = 6 Edm = 2.32136e-06 NCalls = 109 p0 = 0.757722 +/- 0.770168 (limited) p1 = 26.0106 +/- 13.1967 p2 = 7.01687 +/- 5.25991 **************************************** Minimizer is Minuit2 / Migrad MinFCN = 11.7233 Chi2 = 23.4465 NDf = 21 Edm = 1.90261e-07 NCalls = 89 p0 = 1 +/- 0.073348 (limited) p1 = 30.5684 +/- 2.60029 p2 = 7.87047 +/- 1.70364 **************************************** Minimizer is Minuit2 / Migrad Chi2 = 1.90008 NDf = 6 Edm = 9.90083e-06 NCalls = 99 p0 = 0.534999 +/- 0.270262 (limited) p1 = 24.0906 +/- 7.8809 p2 = 5.63935 +/- 3.24361 **************************************** Minimizer is Minuit2 / Migrad MinFCN = 16.1477 Chi2 = 32.2953 NDf = 23 Edm = 2.09463e-06 NCalls = 73 p0 = 0.83612 +/- 0.0936713 (limited) p1 = 25.2247 +/- 3.44688 p2 = 5.16788 +/- 1.95897 **************************************** Minimizer is Minuit2 / Migrad Chi2 = 2.77855 NDf = 8 Edm = 8.13609e-08 NCalls = 85 p0 = 0.702887 +/- 0.199272 (limited) p1 = 20.9159 +/- 3.68349 p2 = 4.41504 +/- 2.04434 **************************************** Minimizer is Minuit2 / Migrad MinFCN = 12.5946 Chi2 = 25.1892 NDf = 22 Edm = 4.03445e-07 NCalls = 53 p0 = 0.686397 +/- 0.100168 (limited) p1 = 20.697 +/- 2.5238 p2 = 4.27225 +/- 1.40442 **************************************** Minimizer is Minuit2 / Migrad Chi2 = 4.37217 NDf = 9 Edm = 2.72083e-07 NCalls = 82 p0 = 0.620959 +/- 0.15843 (limited) p1 = 21.0013 +/- 3.72087 p2 = 4.56895 +/- 2.37229 **************************************** Minimizer is Minuit2 / Migrad MinFCN = 12.31 Chi2 = 24.62 NDf = 22 Edm = 4.02211e-06 NCalls = 62 p0 = 0.738691 +/- 0.0999045 (limited) p1 = 21.6956 +/- 2.49688 p2 = 4.68089 +/- 1.47051 **************************************** Minimizer is Minuit2 / Migrad Chi2 = 1.04047 NDf = 4 Edm = 5.64332e-06 NCalls = 102 p0 = 0.593644 +/- 0.174313 (limited) p1 = 21.0676 +/- 4.04434 p2 = 3.35047 +/- 2.25854 **************************************** Minimizer is Minuit2 / Migrad MinFCN = 8.63265 Chi2 = 17.2653 NDf = 25 Edm = 6.38533e-09 NCalls = 101 p0 = 0.893299 +/- 0.0630243 (limited) p1 = 24.6689 +/- 1.69694 p2 = 2.34492 +/- 0.886976 **************************************** Minimizer is Minuit2 / Migrad Chi2 = 3.95319 NDf = 10 Edm = 1.32825e-07 NCalls = 96 p0 = 0.574996 +/- 0.152016 (limited) p1 = 20.2114 +/- 5.1893 p2 = 4.26461 +/- 2.57398 **************************************** Minimizer is Minuit2 / Migrad MinFCN = 11.4512 Chi2 = 22.9024 NDf = 25 Edm = 9.01028e-07 NCalls = 89 p0 = 0.894533 +/- 0.137242 (limited) p1 = 31.8196 +/- 6.42723 p2 = 9.36301 +/- 3.43315 **************************************** Minimizer is Minuit2 / Migrad Chi2 = 1.2121 NDf = 7 Edm = 3.20149e-06 NCalls = 91 p0 = 0.498388 +/- 0.194573 (limited) p1 = 16.3792 +/- 10.7582 p2 = 4.04759 +/- 14.7395 **************************************** Minimizer is Minuit2 / Migrad MinFCN = 14.2305 Chi2 = 28.4611 NDf = 27 Edm = 7.65153e-11 NCalls = 112 p0 = 0.568628 +/- 0.0691435 (limited) p1 = 18.8276 +/- 0.571408 p2 = 0.0507941 +/- 7.32039e-18 **************************************** Minimizer is Minuit2 / Migrad Chi2 = 1.15843 NDf = 4 Edm = 3.66535e-06 NCalls = 105 p0 = 0.570211 +/- 0.236898 (limited) p1 = 17.2578 +/- 15.7293 p2 = 9.7494 +/- 16.3952 **************************************** Minimizer is Minuit2 / Migrad MinFCN = 20.2423 Chi2 = 40.4846 NDf = 29 Edm = 1.41917e-06 NCalls = 139 p0 = 0.612238 +/- 0.0693685 (limited) p1 = 18.9111 +/- 0.641041 p2 = 0.0810507 +/- 4.47439 **************************************** Minimizer is Minuit2 / Migrad Chi2 = 4.96865 NDf = 8 Edm = 1.88709e-08 NCalls = 80 p0 = 0.666513 +/- 0.140936 (limited) p1 = 21.2569 +/- 2.26557 p2 = 3.48413 +/- 2.03653 **************************************** Minimizer is Minuit2 / Migrad MinFCN = 16.7227 Chi2 = 33.4455 NDf = 22 Edm = 1.37912e-07 NCalls = 60 p0 = 0.671333 +/- 0.0830986 (limited) p1 = 20.0899 +/- 1.80751 p2 = 3.18801 +/- 0.983175 **************************************** Minimizer is Minuit2 / Migrad Chi2 = 2.88079 NDf = 4 Edm = 8.70733e-06 NCalls = 96 p0 = 0.803697 +/- 0.275939 (limited) p1 = 22.1124 +/- 5.26388 p2 = 5.42701 +/- 3.06391 **************************************** Minimizer is Minuit2 / Migrad MinFCN = 11.2809 Chi2 = 22.5619 NDf = 22 Edm = 1.17703e-06 NCalls = 103 p0 = 1 +/- 0.0550354 (limited) p1 = 28.1892 +/- 1.93212 p2 = 5.42012 +/- 1.15081 **************************************** Minimizer is Minuit2 / Migrad Chi2 = 3.96392 NDf = 5 Edm = 7.79729e-08 NCalls = 100 p0 = 0.694889 +/- 0.235894 (limited) p1 = 23.9686 +/- 5.40538 p2 = 5.07476 +/- 3.36335 **************************************** Minimizer is Minuit2 / Migrad MinFCN = 10.6942 Chi2 = 21.3884 NDf = 24 Edm = 4.94209e-06 NCalls = 90 p0 = 0.886412 +/- 0.0741325 (limited) p1 = 26.3919 +/- 2.05984 p2 = 3.75207 +/- 0.962698 **************************************** Minimizer is Minuit2 / Migrad Chi2 = 0.852791 NDf = 5 Edm = 8.88345e-09 NCalls = 84 p0 = 0.310283 +/- 0.164695 (limited) p1 = 15.0842 +/- 5.86864 p2 = 2.43104 +/- 3.51103 **************************************** Minimizer is Minuit2 / Migrad MinFCN = 16.7969 Chi2 = 33.5939 NDf = 22 Edm = 1.06214e-06 NCalls = 90 p0 = 0.858009 +/- 0.0896248 (limited) p1 = 26.7658 +/- 2.7434 p2 = 5.91245 +/- 1.48212 **************************************** Minimizer is Minuit2 / Migrad Chi2 = 1.32394 NDf = 6 Edm = 6.16879e-07 NCalls = 86 p0 = 0.672106 +/- 0.201669 (limited) p1 = 23.2133 +/- 5.10201 p2 = 5.04859 +/- 2.50327 **************************************** Minimizer is Minuit2 / Migrad MinFCN = 8.61404 Chi2 = 17.2281 NDf = 24 Edm = 6.71438e-08 NCalls = 79 p0 = 0.940369 +/- 0.0595691 (limited) p1 = 28.7077 +/- 2.62934 p2 = 5.3511 +/- 1.39597 **************************************** Minimizer is Minuit2 / Migrad Chi2 = 2.48447 NDf = 9 Edm = 3.99523e-06 NCalls = 92 p0 = 0.469573 +/- 0.142912 (limited) p1 = 18.7922 +/- 3.85884 p2 = 2.98044 +/- 2.31127 **************************************** Minimizer is Minuit2 / Migrad MinFCN = 10.8641 Chi2 = 21.7281 NDf = 22 Edm = 2.68775e-06 NCalls = 76 p0 = 0.705796 +/- 0.112524 (limited) p1 = 22.694 +/- 3.20217 p2 = 4.31371 +/- 1.76006 **************************************** Minimizer is Minuit2 / Migrad Chi2 = 4.05841 NDf = 7 Edm = 3.35768e-06 NCalls = 93 p0 = 0.667164 +/- 0.148637 (limited) p1 = 21.9757 +/- 2.55643 p2 = 3.34362 +/- 2.015 **************************************** Minimizer is Minuit2 / Migrad MinFCN = 12.3026 Chi2 = 24.6053 NDf = 24 Edm = 6.94447e-09 NCalls = 70 p0 = 0.771226 +/- 0.0842579 (limited) p1 = 22.8924 +/- 2.39483 p2 = 4.3482 +/- 1.40708 **************************************** Minimizer is Minuit2 / Migrad Chi2 = 3.14114 NDf = 6 Edm = 1.74933e-08 NCalls = 114 p0 = 0.532234 +/- 0.174899 (limited) p1 = 20.0178 +/- 3.71281 p2 = 3.05935 +/- 2.11129 **************************************** Minimizer is Minuit2 / Migrad MinFCN = 13.6754 Chi2 = 27.3508 NDf = 25 Edm = 3.12686e-06 NCalls = 86 p0 = 0.785653 +/- 0.0837745 (limited) p1 = 23.5391 +/- 1.85462 p2 = 2.84004 +/- 0.863279 **************************************** Minimizer is Minuit2 / Migrad Chi2 = 2.88405 NDf = 5 Edm = 1.25252e-05 NCalls = 77 p0 = 0.698497 +/- 0.183511 (limited) p1 = 21.6581 +/- 4.18422 p2 = 4.04207 +/- 1.56968 **************************************** Minimizer is Minuit2 / Migrad MinFCN = 16.2927 Chi2 = 32.5855 NDf = 26 Edm = 9.81736e-09 NCalls = 73 p0 = 0.84928 +/- 0.0880232 (limited) p1 = 26.1083 +/- 2.99956 p2 = 5.04526 +/- 1.47387 **************************************** Minimizer is Minuit2 / Migrad Chi2 = 0.624725 NDf = 4 Edm = 6.43892e-06 NCalls = 71 p0 = 0.380579 +/- 0.134096 (limited) p1 = 13.9323 +/- 2.56334 p2 = 1.96554 +/- 1.64705 **************************************** Minimizer is Minuit2 / Migrad MinFCN = 16.2451 Chi2 = 32.4901 NDf = 24 Edm = 3.46148e-07 NCalls = 111 p0 = 1 +/- 0.13976 (limited) p1 = 33.5941 +/- 3.2286 p2 = 9.3535 +/- 2.03064 **************************************** Minimizer is Minuit2 / Migrad Chi2 = 1.67529 NDf = 7 Edm = 4.64318e-08 NCalls = 80 p0 = 0.616278 +/- 0.1576 (limited) p1 = 18.812 +/- 2.91455 p2 = 3.21096 +/- 1.42859 **************************************** Minimizer is Minuit2 / Migrad MinFCN = 18.0638 Chi2 = 36.1276 NDf = 26 Edm = 1.22808e-06 NCalls = 66 p0 = 0.675732 +/- 0.0875617 (limited) p1 = 20.9227 +/- 2.1898 p2 = 3.60151 +/- 1.27833 **************************************** Minimizer is Minuit2 / Migrad Chi2 = 0.374196 NDf = 2 Edm = 8.80185e-06 NCalls = 80 p0 = 0.685904 +/- 0.174442 (limited) p1 = 19.998 +/- 1.62445 p2 = 1.71179 +/- 1.75684 **************************************** Minimizer is Minuit2 / Migrad MinFCN = 17.4763 Chi2 = 34.9527 NDf = 25 Edm = 1.18689e-07 NCalls = 79 p0 = 0.703138 +/- 0.0910538 (limited) p1 = 20.3182 +/- 1.51335 p2 = 1.05166 +/- 1.00855 **************************************** Minimizer is Minuit2 / Migrad Chi2 = 2.46931 NDf = 7 Edm = 3.32581e-07 NCalls = 93 p0 = 0.640812 +/- 0.135875 (limited) p1 = 22.3459 +/- 3.96589 p2 = 4.39764 +/- 2.51185 **************************************** Minimizer is Minuit2 / Migrad MinFCN = 19.573 Chi2 = 39.1461 NDf = 26 Edm = 1.8708e-07 NCalls = 79 p0 = 0.695688 +/- 0.0960438 (limited) p1 = 25.9337 +/- 2.91836 p2 = 3.8781 +/- 1.39167 **************************************** Minimizer is Minuit2 / Migrad Chi2 = 2.49631 NDf = 3 Edm = 6.6234e-06 NCalls = 102 p0 = 0.611704 +/- 0.35871 (limited) p1 = 20.7057 +/- 8.42105 p2 = 5.08053 +/- 3.9281 **************************************** Minimizer is Minuit2 / Migrad MinFCN = 19.5603 Chi2 = 39.1206 NDf = 22 Edm = 2.27081e-08 NCalls = 74 p0 = 0.700633 +/- 0.0849755 (limited) p1 = 19.1288 +/- 1.84326 p2 = 3.20784 +/- 1.0308 **************************************** Minimizer is Minuit2 / Migrad Chi2 = 0.418946 NDf = 2 Edm = 7.44661e-07 NCalls = 53 p0 = 0.60361 +/- 0.106733 (limited) p1 = 15.7806 +/- 2 p2 = 0.105266 +/- 2 **************************************** Minimizer is Minuit2 / Migrad MinFCN = 19.3993 Chi2 = 38.7986 NDf = 23 Edm = 9.22231e-06 NCalls = 245 p0 = 0.644389 +/- 0.0711313 (limited) p1 = 18.1356 +/- 0.714145 p2 = 0.0157025 +/- 0.682189 **************************************** Minimizer is Minuit2 / Migrad Chi2 = 3.54456 NDf = 5 Edm = 2.33566e-06 NCalls = 85 p0 = 0.527397 +/- 0.217626 (limited) p1 = 17.9928 +/- 6.38912 p2 = 5.4498 +/- 3.84602 **************************************** Minimizer is Minuit2 / Migrad MinFCN = 12.2163 Chi2 = 24.4327 NDf = 20 Edm = 6.3676e-06 NCalls = 80 p0 = 0.859519 +/- 0.0906147 (limited) p1 = 25.943 +/- 3.43909 p2 = 6.71027 +/- 2.02884 **************************************** Minimizer is Minuit2 / Migrad Chi2 = 3.23312 NDf = 8 Edm = 9.46056e-07 NCalls = 70 p0 = 0.515942 +/- 0.0980029 (limited) p1 = 17.2963 +/- 1.44299 p2 = 1.9009 +/- 1.23849 **************************************** Minimizer is Minuit2 / Migrad MinFCN = 11.3898 Chi2 = 22.7795 NDf = 20 Edm = 6.32872e-09 NCalls = 72 p0 = 0.633638 +/- 0.0838664 (limited) p1 = 18.524 +/- 1.68856 p2 = 2.16871 +/- 1.02224 **************************************** Minimizer is Minuit2 / Migrad Chi2 = 5.28211 NDf = 11 Edm = 1.87776e-06 NCalls = 71 p0 = 0.612568 +/- 0.109907 (limited) p1 = 19.3198 +/- 2.18618 p2 = 3.37801 +/- 1.31028 **************************************** Minimizer is Minuit2 / Migrad MinFCN = 9.91351 Chi2 = 19.827 NDf = 22 Edm = 2.00204e-07 NCalls = 62 p0 = 0.636118 +/- 0.097181 (limited) p1 = 19.5971 +/- 2.68815 p2 = 3.88968 +/- 1.7373 **************************************** Minimizer is Minuit2 / Migrad Chi2 = 2.51155 NDf = 7 Edm = 2.60724e-06 NCalls = 74 p0 = 0.647126 +/- 0.147452 (limited) p1 = 20.8474 +/- 2.85119 p2 = 3.27715 +/- 1.66359 **************************************** Minimizer is Minuit2 / Migrad MinFCN = 6.94327 Chi2 = 13.8865 NDf = 22 Edm = 4.86511e-06 NCalls = 73 p0 = 0.901211 +/- 0.0749805 (limited) p1 = 24.7879 +/- 2.21116 p2 = 3.76426 +/- 1.07742 **************************************** Minimizer is Minuit2 / Migrad Chi2 = 2.33728 NDf = 6 Edm = 7.37813e-07 NCalls = 109 p0 = 0.624689 +/- 0.141987 (limited) p1 = 19.3681 +/- 3.57572 p2 = 3.40927 +/- 2.17685 **************************************** Minimizer is Minuit2 / Migrad MinFCN = 14.2977 Chi2 = 28.5955 NDf = 24 Edm = 3.94252e-10 NCalls = 81 p0 = 0.832764 +/- 0.0867739 (limited) p1 = 24.0485 +/- 2.82721 p2 = 4.07159 +/- 1.4461 **************************************** Minimizer is Minuit2 / Migrad Chi2 = 3.75642 NDf = 8 Edm = 5.68096e-06 NCalls = 120 p0 = 0.387014 +/- 0.0702296 (limited) p1 = 11.5811 +/- 8.22684 p2 = 0.313997 +/- 4.44032 **************************************** Minimizer is Minuit2 / Migrad MinFCN = 18.3537 Chi2 = 36.7074 NDf = 24 Edm = 3.14223e-08 NCalls = 122 p0 = 0.766056 +/- 0.130733 (limited) p1 = 26.3265 +/- 5.29894 p2 = 8.25159 +/- 3.37803 **************************************** Minimizer is Minuit2 / Migrad Chi2 = 1.68054 NDf = 6 Edm = 5.00607e-06 NCalls = 79 p0 = 0.492763 +/- 0.200749 (limited) p1 = 18.8758 +/- 5.209 p2 = 3.88829 +/- 2.85902 **************************************** Minimizer is Minuit2 / Migrad MinFCN = 12.5237 Chi2 = 25.0474 NDf = 21 Edm = 6.19402e-09 NCalls = 83 p0 = 0.82576 +/- 0.0905004 (limited) p1 = 24.7459 +/- 2.64975 p2 = 5.53589 +/- 1.50229 **************************************** Minimizer is Minuit2 / Migrad Chi2 = 1.37515 NDf = 4 Edm = 3.40318e-06 NCalls = 106 p0 = 0.759679 +/- 0.234791 (limited) p1 = 24.2145 +/- 5.44887 p2 = 4.93415 +/- 2.65778 **************************************** Minimizer is Minuit2 / Migrad MinFCN = 9.98776 Chi2 = 19.9755 NDf = 23 Edm = 6.74125e-07 NCalls = 88 p0 = 0.922627 +/- 0.053996 (limited) p1 = 25.2002 +/- 1.76064 p2 = 3.37452 +/- 0.879146 **************************************** Minimizer is Minuit2 / Migrad Chi2 = 2.35692 NDf = 4 Edm = 1.08773e-07 NCalls = 81 p0 = 0.373315 +/- 0.215845 (limited) p1 = 12.4572 +/- 7.57085 p2 = 4.00427 +/- 8.97995 **************************************** Minimizer is Minuit2 / Migrad MinFCN = 15.2686 Chi2 = 30.5373 NDf = 24 Edm = 4.23993e-08 NCalls = 154 p0 = 1 +/- 0.165147 (limited) p1 = 30.0737 +/- 2.81991 p2 = 7.24184 +/- 1.65777 **************************************** Minimizer is Minuit2 / Migrad Chi2 = 1.93137 NDf = 7 Edm = 4.79943e-09 NCalls = 113 p0 = 0.632872 +/- 0.231351 (limited) p1 = 27.1811 +/- 8.5188 p2 = 6.83092 +/- 3.30519 **************************************** Minimizer is Minuit2 / Migrad MinFCN = 11.4871 Chi2 = 22.9743 NDf = 24 Edm = 3.13018e-07 NCalls = 73 p0 = 0.886287 +/- 0.0822954 (limited) p1 = 26.4994 +/- 2.79725 p2 = 5.06979 +/- 1.36513 **************************************** Minimizer is Minuit2 / Migrad Chi2 = 3.28016 NDf = 6 Edm = 6.04893e-06 NCalls = 99 p0 = 0.696957 +/- 0.193092 (limited) p1 = 22.9427 +/- 3.44124 p2 = 3.63739 +/- 2.36972 **************************************** Minimizer is Minuit2 / Migrad MinFCN = 14.002 Chi2 = 28.0041 NDf = 25 Edm = 3.57658e-07 NCalls = 62 p0 = 0.820512 +/- 0.0837157 (limited) p1 = 24.7539 +/- 2.2824 p2 = 4.0766 +/- 1.13837 **************************************** Minimizer is Minuit2 / Migrad Chi2 = 2.56902 NDf = 7 Edm = 5.20615e-07 NCalls = 94 p0 = 0.68832 +/- 0.19603 (limited) p1 = 24.2988 +/- 4.41739 p2 = 4.93562 +/- 3.1133 **************************************** Minimizer is Minuit2 / Migrad MinFCN = 10.1565 Chi2 = 20.313 NDf = 23 Edm = 4.51533e-06 NCalls = 73 p0 = 0.83692 +/- 0.100458 (limited) p1 = 26.5351 +/- 2.71955 p2 = 4.32699 +/- 1.33756 **************************************** Minimizer is Minuit2 / Migrad Chi2 = 3.04459 NDf = 7 Edm = 7.4353e-07 NCalls = 83 p0 = 0.659997 +/- 0.249426 (limited) p1 = 22.9747 +/- 5.95617 p2 = 5.36022 +/- 2.66473 **************************************** Minimizer is Minuit2 / Migrad MinFCN = 11.1635 Chi2 = 22.327 NDf = 21 Edm = 1.52311e-08 NCalls = 72 p0 = 0.797119 +/- 0.109369 (limited) p1 = 23.7528 +/- 3.02536 p2 = 5.51075 +/- 1.78264 **************************************** Minimizer is Minuit2 / Migrad Chi2 = 6.27397 NDf = 8 Edm = 5.29961e-07 NCalls = 81 p0 = 0.662433 +/- 0.15714 (limited) p1 = 21.5909 +/- 3.29623 p2 = 4.09179 +/- 1.74745 **************************************** Minimizer is Minuit2 / Migrad MinFCN = 14.006 Chi2 = 28.012 NDf = 23 Edm = 1.73409e-07 NCalls = 73 p0 = 0.74949 +/- 0.087125 (limited) p1 = 22.4394 +/- 2.25986 p2 = 3.18063 +/- 1.06939 **************************************** Minimizer is Minuit2 / Migrad Chi2 = 1.94311 NDf = 9 Edm = 1.89133e-07 NCalls = 106 p0 = 0.575157 +/- 0.298322 (limited) p1 = 25.6868 +/- 11.7079 p2 = 7.54114 +/- 5.74853 **************************************** Minimizer is Minuit2 / Migrad MinFCN = 7.95143 Chi2 = 15.9029 NDf = 22 Edm = 3.34787e-06 NCalls = 100 p0 = 1 +/- 0.0861316 (limited) p1 = 33.4794 +/- 3.24851 p2 = 9.96621 +/- 2.27222 **************************************** Minimizer is Minuit2 / Migrad Chi2 = 2.75509 NDf = 9 Edm = 9.98946e-08 NCalls = 69 p0 = 0.593401 +/- 0.101469 (limited) p1 = 18.8032 +/- 2.57519 p2 = 2.53183 +/- 1.7654 **************************************** Minimizer is Minuit2 / Migrad MinFCN = 8.82691 Chi2 = 17.6538 NDf = 19 Edm = 8.94292e-07 NCalls = 66 p0 = 0.707869 +/- 0.0806949 (limited) p1 = 20.75 +/- 1.52055 p2 = 2.05399 +/- 0.709689 **************************************** Minimizer is Minuit2 / Migrad Chi2 = 2.54952 NDf = 6 Edm = 4.57669e-08 NCalls = 96 p0 = 0.660242 +/- 0.259374 (limited) p1 = 25.0771 +/- 5.98352 p2 = 5.39543 +/- 2.98249 **************************************** Minimizer is Minuit2 / Migrad MinFCN = 13.093 Chi2 = 26.1861 NDf = 25 Edm = 7.24454e-07 NCalls = 63 p0 = 0.822936 +/- 0.0852676 (limited) p1 = 26.505 +/- 2.8571 p2 = 4.82335 +/- 1.47173 **************************************** Minimizer is Minuit2 / Migrad Chi2 = 4.62283 NDf = 10 Edm = 1.36401e-08 NCalls = 89 p0 = 0.592713 +/- 0.183874 (limited) p1 = 20.9349 +/- 5.53213 p2 = 6.39618 +/- 4.21336 **************************************** Minimizer is Minuit2 / Migrad MinFCN = 10.8024 Chi2 = 21.6048 NDf = 22 Edm = 3.61653e-08 NCalls = 73 p0 = 0.718975 +/- 0.133739 (limited) p1 = 24.3254 +/- 4.59911 p2 = 7.31889 +/- 3.07985 **************************************** Minimizer is Minuit2 / Migrad Chi2 = 5.3127 NDf = 6 Edm = 2.53153e-06 NCalls = 119 p0 = 0.534666 +/- 0.0847463 (limited) p1 = 12.0856 +/- 13.9766 p2 = 0.685012 +/- 8.82276 **************************************** Minimizer is Minuit2 / Migrad MinFCN = 16.3818 Chi2 = 32.7636 NDf = 22 Edm = 3.8063e-06 NCalls = 100 p0 = 0.789732 +/- 0.103694 (limited) p1 = 24.4115 +/- 2.95524 p2 = 4.45708 +/- 1.48761 **************************************** Minimizer is Minuit2 / Migrad Chi2 = 0.968364 NDf = 7 Edm = 1.15106e-06 NCalls = 74 p0 = 0.669971 +/- 0.134042 (limited) p1 = 19.9248 +/- 3.66311 p2 = 4.7186 +/- 3.31403 **************************************** Minimizer is Minuit2 / Migrad MinFCN = 15.3613 Chi2 = 30.7226 NDf = 24 Edm = 5.15702e-06 NCalls = 88 p0 = 0.780567 +/- 0.0894369 (limited) p1 = 25.9084 +/- 2.75967 p2 = 4.59539 +/- 1.41025 **************************************** Minimizer is Minuit2 / Migrad Chi2 = 2.88345 NDf = 10 Edm = 2.24225e-06 NCalls = 102 p0 = 0.629842 +/- 0.174064 (limited) p1 = 21.9766 +/- 6.0423 p2 = 6.83408 +/- 3.9968 **************************************** Minimizer is Minuit2 / Migrad MinFCN = 9.27297 Chi2 = 18.5459 NDf = 20 Edm = 1.87394e-06 NCalls = 74 p0 = 0.89538 +/- 0.174255 (limited) p1 = 32.6871 +/- 8.87808 p2 = 12.1149 +/- 5.18796 **************************************** Minimizer is Minuit2 / Migrad Chi2 = 1.80215 NDf = 6 Edm = 2.68316e-07 NCalls = 87 p0 = 0.495591 +/- 0.211145 (limited) p1 = 19.645 +/- 5.2052 p2 = 3.59211 +/- 2.51889 **************************************** Minimizer is Minuit2 / Migrad MinFCN = 11.3263 Chi2 = 22.6526 NDf = 23 Edm = 6.21131e-07 NCalls = 85 p0 = 0.921303 +/- 0.0720411 (limited) p1 = 26.5793 +/- 2.38289 p2 = 5.11338 +/- 1.20119 **************************************** Minimizer is Minuit2 / Migrad Chi2 = 3.79465 NDf = 6 Edm = 4.35871e-08 NCalls = 69 p0 = 0.611171 +/- 0.128277 (limited) p1 = 17.467 +/- 2.93532 p2 = 3.02848 +/- 1.64432 **************************************** Minimizer is Minuit2 / Migrad MinFCN = 16.2411 Chi2 = 32.4822 NDf = 24 Edm = 5.63919e-07 NCalls = 84 p0 = 0.887021 +/- 0.149113 (limited) p1 = 28.9301 +/- 6.59512 p2 = 7.99154 +/- 3.69369 **************************************** Minimizer is Minuit2 / Migrad Chi2 = 2.748 NDf = 7 Edm = 5.78153e-09 NCalls = 140 p0 = 1 +/- 0.733966 (limited) p1 = 28.7334 +/- 2.38732 p2 = 6.33261 +/- 1.85434 **************************************** Minimizer is Minuit2 / Migrad MinFCN = 14.7257 Chi2 = 29.4515 NDf = 25 Edm = 6.17545e-08 NCalls = 98 p0 = 0.793408 +/- 0.149393 (limited) p1 = 25.3941 +/- 5.1633 p2 = 6.20929 +/- 3.20508 **************************************** Minimizer is Minuit2 / Migrad Chi2 = 4.29305 NDf = 9 Edm = 3.06585e-06 NCalls = 82 p0 = 0.687721 +/- 0.16847 (limited) p1 = 22.2779 +/- 3.60769 p2 = 4.13806 +/- 1.75728 **************************************** Minimizer is Minuit2 / Migrad MinFCN = 6.51615 Chi2 = 13.0323 NDf = 21 Edm = 2.56493e-06 NCalls = 80 p0 = 0.929011 +/- 0.128044 (limited) p1 = 26.8551 +/- 4.60022 p2 = 6.16639 +/- 2.6095 **************************************** Minimizer is Minuit2 / Migrad Chi2 = 1.74986 NDf = 2 Edm = 2.69957e-06 NCalls = 256 p0 = 0.999951 +/- 0.988093 (limited) p1 = 33.6961 +/- 9.16268 p2 = 13.7955 +/- 8.24703 **************************************** Minimizer is Minuit2 / Migrad MinFCN = 21.3855 Chi2 = 42.7711 NDf = 26 Edm = 4.23082e-07 NCalls = 149 p0 = 0.808068 +/- 0.0853178 (limited) p1 = 26.8921 +/- 2.88537 p2 = 6.0004 +/- 1.56206 **************************************** Minimizer is Minuit2 / Migrad Chi2 = 4.72905 NDf = 5 Edm = 2.89445e-07 NCalls = 67 p0 = 0.417412 +/- 0.107227 (limited) p1 = 14.5796 +/- 2.95636 p2 = 2.22066 +/- 2.12966 **************************************** Minimizer is Minuit2 / Migrad MinFCN = 20.7746 Chi2 = 41.5492 NDf = 25 Edm = 4.86099e-06 NCalls = 86 p0 = 0.780136 +/- 0.0893488 (limited) p1 = 24.5549 +/- 2.10448 p2 = 4.36318 +/- 1.12085 **************************************** Minimizer is Minuit2 / Migrad Chi2 = 2.45643 NDf = 6 Edm = 2.63752e-06 NCalls = 99 p0 = 0.554001 +/- 0.226655 (limited) p1 = 23.9121 +/- 6.69531 p2 = 6.04267 +/- 3.44117 **************************************** Minimizer is Minuit2 / Migrad MinFCN = 13.3134 Chi2 = 26.6268 NDf = 25 Edm = 5.83165e-09 NCalls = 81 p0 = 0.859757 +/- 0.0748063 (limited) p1 = 25.7851 +/- 2.03938 p2 = 4.58085 +/- 1.11229 **************************************** Minimizer is Minuit2 / Migrad Chi2 = 2.91637 NDf = 4 Edm = 1.377e-05 NCalls = 84 p0 = 0.769946 +/- 0.185015 (limited) p1 = 20.5779 +/- 2.52006 p2 = 3.50084 +/- 1.35396 **************************************** Minimizer is Minuit2 / Migrad MinFCN = 18.6117 Chi2 = 37.2235 NDf = 24 Edm = 1.80945e-07 NCalls = 72 p0 = 0.788394 +/- 0.104211 (limited) p1 = 24.2646 +/- 3.57577 p2 = 5.17213 +/- 2.03607 **************************************** Minimizer is Minuit2 / Migrad Chi2 = 1.21412 NDf = 6 Edm = 1.16053e-08 NCalls = 141 p0 = 0.632519 +/- 0.106789 (limited) p1 = 17.4834 +/- 1.66297 p2 = 1.44082 +/- 1.10945 **************************************** Minimizer is Minuit2 / Migrad MinFCN = 16.0874 Chi2 = 32.1748 NDf = 25 Edm = 1.23857e-08 NCalls = 73 p0 = 0.683032 +/- 0.0852759 (limited) p1 = 20.5028 +/- 2.71991 p2 = 2.79578 +/- 1.30889
Info in <TBinomialEfficiencyFitter::Fit>: Setting limits for parameter p0 to [0.000000,1.000000] Info in <TBinomialEfficiencyFitter::Fit>: Successful Result from Binomial Efficiency fitter of function fM2Fit Warning in <TH1D::Sumw2>: Sum of squares of weights structure already created Info in <TBinomialEfficiencyFitter::Fit>: Setting limits for parameter p0 to [0.000000,1.000000] Info in <TBinomialEfficiencyFitter::Fit>: Successful Result from Binomial Efficiency fitter of function fM2Fit Warning in <TH1D::Sumw2>: Sum of squares of weights structure already created Info in <TBinomialEfficiencyFitter::Fit>: Setting limits for parameter p0 to [0.000000,1.000000] Info in <TBinomialEfficiencyFitter::Fit>: Successful Result from Binomial Efficiency fitter of function fM2Fit Warning in <TH1D::Sumw2>: Sum of squares of weights structure already created Info in <TBinomialEfficiencyFitter::Fit>: Setting limits for parameter p0 to [0.000000,1.000000] Info in <TBinomialEfficiencyFitter::Fit>: Successful Result from Binomial Efficiency fitter of function fM2Fit Warning in <TH1D::Sumw2>: Sum of squares of weights structure already created Info in <TBinomialEfficiencyFitter::Fit>: Setting limits for parameter p0 to [0.000000,1.000000] Info in <TBinomialEfficiencyFitter::Fit>: Successful Result from Binomial Efficiency fitter of function fM2Fit Warning in <TH1D::Sumw2>: Sum of squares of weights structure already created Info in <TBinomialEfficiencyFitter::Fit>: Setting limits for parameter p0 to [0.000000,1.000000] Info in <TBinomialEfficiencyFitter::Fit>: Successful Result from Binomial Efficiency fitter of function fM2Fit Warning in <TH1D::Sumw2>: Sum of squares of weights structure already created Info in <TBinomialEfficiencyFitter::Fit>: Setting limits for parameter p0 to [0.000000,1.000000] Info in <TBinomialEfficiencyFitter::Fit>: Successful Result from Binomial Efficiency fitter of function fM2Fit Warning in <TH1D::Sumw2>: Sum of squares of weights structure already created Info in <TBinomialEfficiencyFitter::Fit>: Setting limits for parameter p0 to [0.000000,1.000000] Info in <TBinomialEfficiencyFitter::Fit>: Successful Result from Binomial Efficiency fitter of function fM2Fit Warning in <TH1D::Sumw2>: Sum of squares of weights structure already created Info in <TBinomialEfficiencyFitter::Fit>: Setting limits for parameter p0 to [0.000000,1.000000] Info in <TBinomialEfficiencyFitter::Fit>: Successful Result from Binomial Efficiency fitter of function fM2Fit Warning in <TH1D::Sumw2>: Sum of squares of weights structure already created Info in <TBinomialEfficiencyFitter::Fit>: Setting limits for parameter p0 to [0.000000,1.000000] Info in <TBinomialEfficiencyFitter::Fit>: Successful Result from Binomial Efficiency fitter of function fM2Fit Warning in <TH1D::Sumw2>: Sum of squares of weights structure already created Info in <TBinomialEfficiencyFitter::Fit>: Setting limits for parameter p0 to [0.000000,1.000000] Info in <TBinomialEfficiencyFitter::Fit>: Successful Result from Binomial Efficiency fitter of function fM2Fit Warning in <TH1D::Sumw2>: Sum of squares of weights structure already created Info in <TBinomialEfficiencyFitter::Fit>: Setting limits for parameter p0 to [0.000000,1.000000] Info in <TBinomialEfficiencyFitter::Fit>: Successful Result from Binomial Efficiency fitter of function fM2Fit Warning in <TH1D::Sumw2>: Sum of squares of weights structure already created Info in <TBinomialEfficiencyFitter::Fit>: Setting limits for parameter p0 to [0.000000,1.000000] Info in <TBinomialEfficiencyFitter::Fit>: Successful Result from Binomial Efficiency fitter of function fM2Fit Warning in <TH1D::Sumw2>: Sum of squares of weights structure already created Info in <TBinomialEfficiencyFitter::Fit>: Setting limits for parameter p0 to [0.000000,1.000000] Info in <TBinomialEfficiencyFitter::Fit>: Successful Result from Binomial Efficiency fitter of function fM2Fit Warning in <TH1D::Sumw2>: Sum of squares of weights structure already created Info in <TBinomialEfficiencyFitter::Fit>: Setting limits for parameter p0 to [0.000000,1.000000] Info in <TBinomialEfficiencyFitter::Fit>: Successful Result from Binomial Efficiency fitter of function fM2Fit Warning in <TH1D::Sumw2>: Sum of squares of weights structure already created Info in <TBinomialEfficiencyFitter::Fit>: Setting limits for parameter p0 to [0.000000,1.000000] Info in <TBinomialEfficiencyFitter::Fit>: Successful Result from Binomial Efficiency fitter of function fM2Fit Warning in <TH1D::Sumw2>: Sum of squares of weights structure already created Info in <TBinomialEfficiencyFitter::Fit>: Setting limits for parameter p0 to [0.000000,1.000000] Info in <TBinomialEfficiencyFitter::Fit>: Successful Result from Binomial Efficiency fitter of function fM2Fit Warning in <TH1D::Sumw2>: Sum of squares of weights structure already created Info in <TBinomialEfficiencyFitter::Fit>: Setting limits for parameter p0 to [0.000000,1.000000] Info in <TBinomialEfficiencyFitter::Fit>: Successful Result from Binomial Efficiency fitter of function fM2Fit Warning in <TH1D::Sumw2>: Sum of squares of weights structure already created Warning in <Fit>: Abnormal termination of minimization. Warning in <TH1D::Sumw2>: Sum of squares of weights structure already created Info in <TBinomialEfficiencyFitter::Fit>: Setting limits for parameter p0 to [0.000000,1.000000] Info in <TBinomialEfficiencyFitter::Fit>: Successful Result from Binomial Efficiency fitter of function fM2Fit Warning in <TH1D::Sumw2>: Sum of squares of weights structure already created Info in <TBinomialEfficiencyFitter::Fit>: Setting limits for parameter p0 to [0.000000,1.000000] Info in <TBinomialEfficiencyFitter::Fit>: Successful Result from Binomial Efficiency fitter of function fM2Fit Warning in <TH1D::Sumw2>: Sum of squares of weights structure already created Info in <TBinomialEfficiencyFitter::Fit>: Setting limits for parameter p0 to [0.000000,1.000000] Info in <TBinomialEfficiencyFitter::Fit>: Successful Result from Binomial Efficiency fitter of function fM2Fit Warning in <TH1D::Sumw2>: Sum of squares of weights structure already created Info in <TBinomialEfficiencyFitter::Fit>: Setting limits for parameter p0 to [0.000000,1.000000] Info in <TBinomialEfficiencyFitter::Fit>: Successful Result from Binomial Efficiency fitter of function fM2Fit Warning in <TH1D::Sumw2>: Sum of squares of weights structure already created Info in <TBinomialEfficiencyFitter::Fit>: Setting limits for parameter p0 to [0.000000,1.000000] Info in <TBinomialEfficiencyFitter::Fit>: Successful Result from Binomial Efficiency fitter of function fM2Fit Warning in <TH1D::Sumw2>: Sum of squares of weights structure already created Info in <TBinomialEfficiencyFitter::Fit>: Setting limits for parameter p0 to [0.000000,1.000000] Info in <TBinomialEfficiencyFitter::Fit>: Successful Result from Binomial Efficiency fitter of function fM2Fit Warning in <TH1D::Sumw2>: Sum of squares of weights structure already created Info in <TBinomialEfficiencyFitter::Fit>: Setting limits for parameter p0 to [0.000000,1.000000] Info in <TBinomialEfficiencyFitter::Fit>: Successful Result from Binomial Efficiency fitter of function fM2Fit Warning in <TH1D::Sumw2>: Sum of squares of weights structure already created Info in <TBinomialEfficiencyFitter::Fit>: Setting limits for parameter p0 to [0.000000,1.000000] Info in <TBinomialEfficiencyFitter::Fit>: Successful Result from Binomial Efficiency fitter of function fM2Fit Warning in <TH1D::Sumw2>: Sum of squares of weights structure already created Info in <TBinomialEfficiencyFitter::Fit>: Setting limits for parameter p0 to [0.000000,1.000000] Info in <TBinomialEfficiencyFitter::Fit>: Successful Result from Binomial Efficiency fitter of function fM2Fit Warning in <TH1D::Sumw2>: Sum of squares of weights structure already created Info in <TBinomialEfficiencyFitter::Fit>: Setting limits for parameter p0 to [0.000000,1.000000] Info in <TBinomialEfficiencyFitter::Fit>: Successful Result from Binomial Efficiency fitter of function fM2Fit Warning in <TH1D::Sumw2>: Sum of squares of weights structure already created Info in <TBinomialEfficiencyFitter::Fit>: Setting limits for parameter p0 to [0.000000,1.000000] Info in <TBinomialEfficiencyFitter::Fit>: Successful Result from Binomial Efficiency fitter of function fM2Fit Warning in <TH1D::Sumw2>: Sum of squares of weights structure already created Info in <TBinomialEfficiencyFitter::Fit>: Setting limits for parameter p0 to [0.000000,1.000000] Info in <TBinomialEfficiencyFitter::Fit>: Successful Result from Binomial Efficiency fitter of function fM2Fit Warning in <TH1D::Sumw2>: Sum of squares of weights structure already created Info in <TBinomialEfficiencyFitter::Fit>: Setting limits for parameter p0 to [0.000000,1.000000] Info in <TBinomialEfficiencyFitter::Fit>: Successful Result from Binomial Efficiency fitter of function fM2Fit Warning in <TH1D::Sumw2>: Sum of squares of weights structure already created Info in <TBinomialEfficiencyFitter::Fit>: Setting limits for parameter p0 to [0.000000,1.000000] Info in <TBinomialEfficiencyFitter::Fit>: Successful Result from Binomial Efficiency fitter of function fM2Fit Warning in <TH1D::Sumw2>: Sum of squares of weights structure already created Info in <TBinomialEfficiencyFitter::Fit>: Setting limits for parameter p0 to [0.000000,1.000000] Info in <TBinomialEfficiencyFitter::Fit>: Successful Result from Binomial Efficiency fitter of function fM2Fit Warning in <TH1D::Sumw2>: Sum of squares of weights structure already created Info in <TBinomialEfficiencyFitter::Fit>: Setting limits for parameter p0 to [0.000000,1.000000] Info in <TBinomialEfficiencyFitter::Fit>: Successful Result from Binomial Efficiency fitter of function fM2Fit Warning in <TH1D::Sumw2>: Sum of squares of weights structure already created Info in <TBinomialEfficiencyFitter::Fit>: Setting limits for parameter p0 to [0.000000,1.000000] Info in <TBinomialEfficiencyFitter::Fit>: Successful Result from Binomial Efficiency fitter of function fM2Fit Warning in <TH1D::Sumw2>: Sum of squares of weights structure already created Info in <TBinomialEfficiencyFitter::Fit>: Setting limits for parameter p0 to [0.000000,1.000000] Info in <TBinomialEfficiencyFitter::Fit>: Successful Result from Binomial Efficiency fitter of function fM2Fit Warning in <TH1D::Sumw2>: Sum of squares of weights structure already created Info in <TBinomialEfficiencyFitter::Fit>: Setting limits for parameter p0 to [0.000000,1.000000] Info in <TBinomialEfficiencyFitter::Fit>: Successful Result from Binomial Efficiency fitter of function fM2Fit Warning in <TH1D::Sumw2>: Sum of squares of weights structure already created Info in <TBinomialEfficiencyFitter::Fit>: Setting limits for parameter p0 to [0.000000,1.000000] Info in <TBinomialEfficiencyFitter::Fit>: Successful Result from Binomial Efficiency fitter of function fM2Fit Warning in <TH1D::Sumw2>: Sum of squares of weights structure already created Info in <TBinomialEfficiencyFitter::Fit>: Setting limits for parameter p0 to [0.000000,1.000000] Info in <TBinomialEfficiencyFitter::Fit>: Successful Result from Binomial Efficiency fitter of function fM2Fit Warning in <TH1D::Sumw2>: Sum of squares of weights structure already created Info in <TBinomialEfficiencyFitter::Fit>: Setting limits for parameter p0 to [0.000000,1.000000] Info in <TBinomialEfficiencyFitter::Fit>: Successful Result from Binomial Efficiency fitter of function fM2Fit Warning in <TH1D::Sumw2>: Sum of squares of weights structure already created Info in <TBinomialEfficiencyFitter::Fit>: Setting limits for parameter p0 to [0.000000,1.000000] Info in <TBinomialEfficiencyFitter::Fit>: Successful Result from Binomial Efficiency fitter of function fM2Fit Warning in <TH1D::Sumw2>: Sum of squares of weights structure already created Info in <TBinomialEfficiencyFitter::Fit>: Setting limits for parameter p0 to [0.000000,1.000000] Info in <TBinomialEfficiencyFitter::Fit>: Successful Result from Binomial Efficiency fitter of function fM2Fit Warning in <TH1D::Sumw2>: Sum of squares of weights structure already created Info in <TBinomialEfficiencyFitter::Fit>: Setting limits for parameter p0 to [0.000000,1.000000] Info in <TBinomialEfficiencyFitter::Fit>: Successful Result from Binomial Efficiency fitter of function fM2Fit Warning in <TH1D::Sumw2>: Sum of squares of weights structure already created Info in <TBinomialEfficiencyFitter::Fit>: Setting limits for parameter p0 to [0.000000,1.000000] Info in <TBinomialEfficiencyFitter::Fit>: Successful Result from Binomial Efficiency fitter of function fM2Fit Warning in <TH1D::Sumw2>: Sum of squares of weights structure already created Info in <TBinomialEfficiencyFitter::Fit>: Setting limits for parameter p0 to [0.000000,1.000000] Info in <TBinomialEfficiencyFitter::Fit>: Successful Result from Binomial Efficiency fitter of function fM2Fit Warning in <TH1D::Sumw2>: Sum of squares of weights structure already created Info in <TBinomialEfficiencyFitter::Fit>: Setting limits for parameter p0 to [0.000000,1.000000] Info in <TBinomialEfficiencyFitter::Fit>: Successful Result from Binomial Efficiency fitter of function fM2Fit Warning in <TH1D::Sumw2>: Sum of squares of weights structure already created Info in <TBinomialEfficiencyFitter::Fit>: Setting limits for parameter p0 to [0.000000,1.000000] Info in <TBinomialEfficiencyFitter::Fit>: Successful Result from Binomial Efficiency fitter of function fM2Fit Warning in <TH1D::Sumw2>: Sum of squares of weights structure already created Info in <TBinomialEfficiencyFitter::Fit>: Setting limits for parameter p0 to [0.000000,1.000000] Info in <TBinomialEfficiencyFitter::Fit>: Successful Result from Binomial Efficiency fitter of function fM2Fit Warning in <TH1D::Sumw2>: Sum of squares of weights structure already created Info in <TBinomialEfficiencyFitter::Fit>: Setting limits for parameter p0 to [0.000000,1.000000] Info in <TBinomialEfficiencyFitter::Fit>: Successful Result from Binomial Efficiency fitter of function fM2Fit Warning in <TH1D::Sumw2>: Sum of squares of weights structure already created Info in <TBinomialEfficiencyFitter::Fit>: Setting limits for parameter p0 to [0.000000,1.000000] Info in <TBinomialEfficiencyFitter::Fit>: Successful Result from Binomial Efficiency fitter of function fM2Fit Warning in <TH1D::Sumw2>: Sum of squares of weights structure already created Info in <TBinomialEfficiencyFitter::Fit>: Setting limits for parameter p0 to [0.000000,1.000000] Info in <TBinomialEfficiencyFitter::Fit>: Successful Result from Binomial Efficiency fitter of function fM2Fit Warning in <TH1D::Sumw2>: Sum of squares of weights structure already created Info in <TBinomialEfficiencyFitter::Fit>: Setting limits for parameter p0 to [0.000000,1.000000] Info in <TBinomialEfficiencyFitter::Fit>: Successful Result from Binomial Efficiency fitter of function fM2Fit Warning in <TH1D::Sumw2>: Sum of squares of weights structure already created Info in <TBinomialEfficiencyFitter::Fit>: Setting limits for parameter p0 to [0.000000,1.000000] Info in <TBinomialEfficiencyFitter::Fit>: Successful Result from Binomial Efficiency fitter of function fM2Fit Warning in <TH1D::Sumw2>: Sum of squares of weights structure already created Info in <TBinomialEfficiencyFitter::Fit>: Setting limits for parameter p0 to [0.000000,1.000000] Info in <TBinomialEfficiencyFitter::Fit>: Successful Result from Binomial Efficiency fitter of function fM2Fit Warning in <TH1D::Sumw2>: Sum of squares of weights structure already created Info in <TBinomialEfficiencyFitter::Fit>: Setting limits for parameter p0 to [0.000000,1.000000] Info in <TBinomialEfficiencyFitter::Fit>: Successful Result from Binomial Efficiency fitter of function fM2Fit Warning in <TH1D::Sumw2>: Sum of squares of weights structure already created Info in <TBinomialEfficiencyFitter::Fit>: Setting limits for parameter p0 to [0.000000,1.000000] Info in <TBinomialEfficiencyFitter::Fit>: Successful Result from Binomial Efficiency fitter of function fM2Fit Warning in <TH1D::Sumw2>: Sum of squares of weights structure already created Info in <TBinomialEfficiencyFitter::Fit>: Setting limits for parameter p0 to [0.000000,1.000000] Info in <TBinomialEfficiencyFitter::Fit>: Successful Result from Binomial Efficiency fitter of function fM2Fit Warning in <TH1D::Sumw2>: Sum of squares of weights structure already created Info in <TBinomialEfficiencyFitter::Fit>: Setting limits for parameter p0 to [0.000000,1.000000] Info in <TBinomialEfficiencyFitter::Fit>: Successful Result from Binomial Efficiency fitter of function fM2Fit Warning in <TH1D::Sumw2>: Sum of squares of weights structure already created Info in <TBinomialEfficiencyFitter::Fit>: Setting limits for parameter p0 to [0.000000,1.000000] Info in <TBinomialEfficiencyFitter::Fit>: Successful Result from Binomial Efficiency fitter of function fM2Fit Warning in <TH1D::Sumw2>: Sum of squares of weights structure already created Info in <TBinomialEfficiencyFitter::Fit>: Setting limits for parameter p0 to [0.000000,1.000000] Info in <TBinomialEfficiencyFitter::Fit>: Successful Result from Binomial Efficiency fitter of function fM2Fit Warning in <TH1D::Sumw2>: Sum of squares of weights structure already created Info in <TBinomialEfficiencyFitter::Fit>: Setting limits for parameter p0 to [0.000000,1.000000] Info in <TBinomialEfficiencyFitter::Fit>: Successful Result from Binomial Efficiency fitter of function fM2Fit Warning in <TH1D::Sumw2>: Sum of squares of weights structure already created Info in <TBinomialEfficiencyFitter::Fit>: Setting limits for parameter p0 to [0.000000,1.000000] Info in <TBinomialEfficiencyFitter::Fit>: Successful Result from Binomial Efficiency fitter of function fM2Fit Warning in <TH1D::Sumw2>: Sum of squares of weights structure already created Info in <TBinomialEfficiencyFitter::Fit>: Setting limits for parameter p0 to [0.000000,1.000000] Info in <TBinomialEfficiencyFitter::Fit>: Successful Result from Binomial Efficiency fitter of function fM2Fit Warning in <TH1D::Sumw2>: Sum of squares of weights structure already created Info in <TBinomialEfficiencyFitter::Fit>: Setting limits for parameter p0 to [0.000000,1.000000] Info in <TBinomialEfficiencyFitter::Fit>: Successful Result from Binomial Efficiency fitter of function fM2Fit Warning in <TH1D::Sumw2>: Sum of squares of weights structure already created Info in <TBinomialEfficiencyFitter::Fit>: Setting limits for parameter p0 to [0.000000,1.000000] Info in <TBinomialEfficiencyFitter::Fit>: Successful Result from Binomial Efficiency fitter of function fM2Fit Warning in <TH1D::Sumw2>: Sum of squares of weights structure already created Info in <TBinomialEfficiencyFitter::Fit>: Setting limits for parameter p0 to [0.000000,1.000000] Info in <TBinomialEfficiencyFitter::Fit>: Successful Result from Binomial Efficiency fitter of function fM2Fit Warning in <TH1D::Sumw2>: Sum of squares of weights structure already created Info in <TBinomialEfficiencyFitter::Fit>: Setting limits for parameter p0 to [0.000000,1.000000] Info in <TBinomialEfficiencyFitter::Fit>: Successful Result from Binomial Efficiency fitter of function fM2Fit Warning in <TH1D::Sumw2>: Sum of squares of weights structure already created Info in <TBinomialEfficiencyFitter::Fit>: Setting limits for parameter p0 to [0.000000,1.000000] Info in <TBinomialEfficiencyFitter::Fit>: Successful Result from Binomial Efficiency fitter of function fM2Fit Warning in <TH1D::Sumw2>: Sum of squares of weights structure already created Info in <TBinomialEfficiencyFitter::Fit>: Setting limits for parameter p0 to [0.000000,1.000000] Info in <TBinomialEfficiencyFitter::Fit>: Successful Result from Binomial Efficiency fitter of function fM2Fit Warning in <TH1D::Sumw2>: Sum of squares of weights structure already created Info in <TBinomialEfficiencyFitter::Fit>: Setting limits for parameter p0 to [0.000000,1.000000] Info in <TBinomialEfficiencyFitter::Fit>: Successful Result from Binomial Efficiency fitter of function fM2Fit Warning in <TH1D::Sumw2>: Sum of squares of weights structure already created Info in <TBinomialEfficiencyFitter::Fit>: Setting limits for parameter p0 to [0.000000,1.000000] Info in <TBinomialEfficiencyFitter::Fit>: Successful Result from Binomial Efficiency fitter of function fM2Fit Warning in <TH1D::Sumw2>: Sum of squares of weights structure already created Info in <TBinomialEfficiencyFitter::Fit>: Setting limits for parameter p0 to [0.000000,1.000000] Info in <TBinomialEfficiencyFitter::Fit>: Successful Result from Binomial Efficiency fitter of function fM2Fit Warning in <TH1D::Sumw2>: Sum of squares of weights structure already created Info in <TBinomialEfficiencyFitter::Fit>: Setting limits for parameter p0 to [0.000000,1.000000] Info in <TBinomialEfficiencyFitter::Fit>: Successful Result from Binomial Efficiency fitter of function fM2Fit Warning in <TH1D::Sumw2>: Sum of squares of weights structure already created Info in <TBinomialEfficiencyFitter::Fit>: Setting limits for parameter p0 to [0.000000,1.000000] Info in <TBinomialEfficiencyFitter::Fit>: Successful Result from Binomial Efficiency fitter of function fM2Fit Warning in <TH1D::Sumw2>: Sum of squares of weights structure already created Info in <TBinomialEfficiencyFitter::Fit>: Setting limits for parameter p0 to [0.000000,1.000000] Info in <TBinomialEfficiencyFitter::Fit>: Successful Result from Binomial Efficiency fitter of function fM2Fit Warning in <TH1D::Sumw2>: Sum of squares of weights structure already created Info in <TBinomialEfficiencyFitter::Fit>: Setting limits for parameter p0 to [0.000000,1.000000] Info in <TBinomialEfficiencyFitter::Fit>: Successful Result from Binomial Efficiency fitter of function fM2Fit Warning in <TH1D::Sumw2>: Sum of squares of weights structure already created Info in <TBinomialEfficiencyFitter::Fit>: Setting limits for parameter p0 to [0.000000,1.000000] Info in <TBinomialEfficiencyFitter::Fit>: Successful Result from Binomial Efficiency fitter of function fM2Fit Warning in <TH1D::Sumw2>: Sum of squares of weights structure already created Info in <TBinomialEfficiencyFitter::Fit>: Setting limits for parameter p0 to [0.000000,1.000000] Info in <TBinomialEfficiencyFitter::Fit>: Successful Result from Binomial Efficiency fitter of function fM2Fit Warning in <TH1D::Sumw2>: Sum of squares of weights structure already created Info in <TBinomialEfficiencyFitter::Fit>: Setting limits for parameter p0 to [0.000000,1.000000] Info in <TBinomialEfficiencyFitter::Fit>: Successful Result from Binomial Efficiency fitter of function fM2Fit Warning in <TH1D::Sumw2>: Sum of squares of weights structure already created Info in <TBinomialEfficiencyFitter::Fit>: Setting limits for parameter p0 to [0.000000,1.000000] Info in <TBinomialEfficiencyFitter::Fit>: Successful Result from Binomial Efficiency fitter of function fM2Fit Warning in <TH1D::Sumw2>: Sum of squares of weights structure already created Info in <TBinomialEfficiencyFitter::Fit>: Setting limits for parameter p0 to [0.000000,1.000000] Info in <TBinomialEfficiencyFitter::Fit>: Successful Result from Binomial Efficiency fitter of function fM2Fit Warning in <TH1D::Sumw2>: Sum of squares of weights structure already created Info in <TBinomialEfficiencyFitter::Fit>: Setting limits for parameter p0 to [0.000000,1.000000] Info in <TBinomialEfficiencyFitter::Fit>: Successful Result from Binomial Efficiency fitter of function fM2Fit Warning in <TH1D::Sumw2>: Sum of squares of weights structure already created Info in <TBinomialEfficiencyFitter::Fit>: Setting limits for parameter p0 to [0.000000,1.000000] Info in <TBinomialEfficiencyFitter::Fit>: Successful Result from Binomial Efficiency fitter of function fM2Fit Warning in <TH1D::Sumw2>: Sum of squares of weights structure already created Info in <TBinomialEfficiencyFitter::Fit>: Setting limits for parameter p0 to [0.000000,1.000000] Info in <TBinomialEfficiencyFitter::Fit>: Successful Result from Binomial Efficiency fitter of function fM2Fit Warning in <TH1D::Sumw2>: Sum of squares of weights structure already created Info in <TBinomialEfficiencyFitter::Fit>: Setting limits for parameter p0 to [0.000000,1.000000] Info in <TBinomialEfficiencyFitter::Fit>: Successful Result from Binomial Efficiency fitter of function fM2Fit Warning in <TH1D::Sumw2>: Sum of squares of weights structure already created Info in <TBinomialEfficiencyFitter::Fit>: Setting limits for parameter p0 to [0.000000,1.000000] Info in <TBinomialEfficiencyFitter::Fit>: Successful Result from Binomial Efficiency fitter of function fM2Fit Warning in <TH1D::Sumw2>: Sum of squares of weights structure already created Info in <TBinomialEfficiencyFitter::Fit>: Setting limits for parameter p0 to [0.000000,1.000000] Info in <TBinomialEfficiencyFitter::Fit>: Successful Result from Binomial Efficiency fitter of function fM2Fit Warning in <TH1D::Sumw2>: Sum of squares of weights structure already created Info in <TBinomialEfficiencyFitter::Fit>: Setting limits for parameter p0 to [0.000000,1.000000] Info in <TBinomialEfficiencyFitter::Fit>: Successful Result from Binomial Efficiency fitter of function fM2Fit Warning in <TH1D::Sumw2>: Sum of squares of weights structure already created Info in <TBinomialEfficiencyFitter::Fit>: Setting limits for parameter p0 to [0.000000,1.000000] Info in <TBinomialEfficiencyFitter::Fit>: Successful Result from Binomial Efficiency fitter of function fM2Fit Warning in <TH1D::Sumw2>: Sum of squares of weights structure already created Info in <TBinomialEfficiencyFitter::Fit>: Setting limits for parameter p0 to [0.000000,1.000000] Info in <TBinomialEfficiencyFitter::Fit>: Successful Result from Binomial Efficiency fitter of function fM2Fit Warning in <TH1D::Sumw2>: Sum of squares of weights structure already created Info in <TBinomialEfficiencyFitter::Fit>: Setting limits for parameter p0 to [0.000000,1.000000] Info in <TBinomialEfficiencyFitter::Fit>: Successful Result from Binomial Efficiency fitter of function fM2Fit Warning in <TH1D::Sumw2>: Sum of squares of weights structure already created Info in <TBinomialEfficiencyFitter::Fit>: Setting limits for parameter p0 to [0.000000,1.000000] Info in <TBinomialEfficiencyFitter::Fit>: Successful Result from Binomial Efficiency fitter of function fM2Fit Warning in <TH1D::Sumw2>: Sum of squares of weights structure already created Info in <TBinomialEfficiencyFitter::Fit>: Setting limits for parameter p0 to [0.000000,1.000000] Info in <TBinomialEfficiencyFitter::Fit>: Successful Result from Binomial Efficiency fitter of function fM2Fit Warning in <TH1D::Sumw2>: Sum of squares of weights structure already created Info in <TBinomialEfficiencyFitter::Fit>: Setting limits for parameter p0 to [0.000000,1.000000] Info in <TBinomialEfficiencyFitter::Fit>: Successful Result from Binomial Efficiency fitter of function fM2Fit Warning in <TH1D::Sumw2>: Sum of squares of weights structure already created Info in <TBinomialEfficiencyFitter::Fit>: Setting limits for parameter p0 to [0.000000,1.000000] Info in <TBinomialEfficiencyFitter::Fit>: Successful Result from Binomial Efficiency fitter of function fM2Fit Warning in <TH1D::Sumw2>: Sum of squares of weights structure already created Info in <TBinomialEfficiencyFitter::Fit>: Setting limits for parameter p0 to [0.000000,1.000000] Info in <TBinomialEfficiencyFitter::Fit>: Successful Result from Binomial Efficiency fitter of function fM2Fit Warning in <TH1D::Sumw2>: Sum of squares of weights structure already created Info in <TBinomialEfficiencyFitter::Fit>: Setting limits for parameter p0 to [0.000000,1.000000] Info in <TBinomialEfficiencyFitter::Fit>: Successful Result from Binomial Efficiency fitter of function fM2Fit Warning in <TH1D::Sumw2>: Sum of squares of weights structure already created Info in <TBinomialEfficiencyFitter::Fit>: Setting limits for parameter p0 to [0.000000,1.000000] Info in <TBinomialEfficiencyFitter::Fit>: Successful Result from Binomial Efficiency fitter of function fM2Fit Warning in <TH1D::Sumw2>: Sum of squares of weights structure already created Info in <TBinomialEfficiencyFitter::Fit>: Setting limits for parameter p0 to [0.000000,1.000000] Info in <TBinomialEfficiencyFitter::Fit>: Successful Result from Binomial Efficiency fitter of function fM2Fit
Draw all canvases
%jsroot on
gROOT->GetListOfCanvases()->Draw()