The W boson mass analysis from the ATLAS Open Data release of 2020, with RDataFrame.
This tutorial is the analysis of the W boson mass taken from the ATLAS Open Data release in 2020 (http://opendata.atlas.cern/release/2020/documentation/). The data was recorded with the ATLAS detector during 2016 at a center-of-mass energy of 13 TeV. W bosons are produced frequently at the LHC and are an important background to studies of Standard Model processes, for example the Higgs boson analyses.
The analysis is translated to a RDataFrame workflow processing up to 60 GB of simulated events and data. By default the analysis runs on a preskimmed dataset to reduce the runtime. The full dataset can be used with the --full-dataset argument and you can also run only on a fraction of the original dataset using the argument --lumi-scale.
Author: Stefan Wunsch (KIT, CERN)
This notebook tutorial was automatically generated with ROOTBOOK-izer from the macro found in the ROOT repository on Thursday, March 23, 2023 at 10:45 AM.
import ROOT
import sys
import json
import argparse
import os
Welcome to JupyROOT 6.29/01
Argument parsing
parser = argparse.ArgumentParser()
parser.add_argument("--lumi-scale", type=float, default=0.001,
help="Run only on a fraction of the total available 10 fb^-1 (only usable together with --full-dataset)")
parser.add_argument("--full-dataset", action="store_true", default=False,
help="Use the full dataset (use --lumi-scale to run only on a fraction of it)")
parser.add_argument("-b", action="store_true", default=False, help="Use ROOT batch mode")
parser.add_argument("-t", action="store_true", default=False, help="Use implicit multi threading (for the full dataset only possible with --lumi-scale 1.0)")
if 'df105_WBosonAnalysis.py' in sys.argv[0]:
# Script
args = parser.parse_args()
else:
# Notebook
args = parser.parse_args(args=[])
if args.b: ROOT.gROOT.SetBatch(True)
if args.t: ROOT.EnableImplicitMT()
if not args.full_dataset: lumi_scale = 0.001 # The preskimmed dataset contains only 0.01 fb^-1
else: lumi_scale = args.lumi_scale
lumi = 10064.0
print('Run on data corresponding to {:.2f} fb^-1 ...'.format(lumi * lumi_scale / 1000.0))
if args.full_dataset: dataset_path = "root://eospublic.cern.ch//eos/opendata/atlas/OutreachDatasets/2020-01-22"
else: dataset_path = "root://eospublic.cern.ch//eos/root-eos/reduced_atlas_opendata/w"
Run on data corresponding to 0.01 fb^-1 ...
Create a ROOT dataframe for each dataset Note that we load the filenames from the external json file placed in the same folder than this script.
files = json.load(open(os.path.join(ROOT.gROOT.GetTutorialsDir(), "dataframe/df105_WBosonAnalysis.json")))
processes = files.keys()
df = {}
xsecs = {}
sumws = {}
samples = []
for p in processes:
for d in files[p]:
# Construct the dataframes
folder = d[0] # Folder name
sample = d[1] # Sample name
xsecs[sample] = d[2] # Cross-section
sumws[sample] = d[3] # Sum of weights
num_events = d[4] # Number of events
samples.append(sample)
df[sample] = ROOT.RDataFrame("mini", "{}/1lep/{}/{}.1lep.root".format(dataset_path, folder, sample))
# Scale down the datasets if requested
if args.full_dataset and lumi_scale < 1.0:
df[sample] = df[sample].Range(int(num_events * lumi_scale))
Select events for the analysis
Just-in-time compile custom helper function performing complex computations
ROOT.gInterpreter.Declare("""
bool GoodElectronOrMuon(int type, float pt, float eta, float phi, float e, float trackd0pv, float tracksigd0pv, float z0)
{
ROOT::Math::PtEtaPhiEVector p(pt / 1000.0, eta, phi, e / 1000.0);
if (abs(z0 * sin(p.theta())) > 0.5) return false;
if (type == 11 && abs(eta) < 2.46 && (abs(eta) < 1.37 || abs(eta) > 1.52)) {
if (abs(trackd0pv / tracksigd0pv) > 5) return false;
return true;
}
if (type == 13 && abs(eta) < 2.5) {
if (abs(trackd0pv / tracksigd0pv) > 3) return false;
return true;
}
return false;
}
""")
for s in samples:
# Select events with a muon or electron trigger and with a missing transverse energy larger than 30 GeV
df[s] = df[s].Filter("trigE || trigM")\
.Filter("met_et > 30000")
# Find events with exactly one good lepton
df[s] = df[s].Define("good_lep", "lep_isTightID && lep_pt > 35000 && lep_ptcone30 / lep_pt < 0.1 && lep_etcone20 / lep_pt < 0.1")\
.Filter("ROOT::VecOps::Sum(good_lep) == 1")
# Apply additional cuts in case the lepton is an electron or muon
df[s] = df[s].Define("idx", "ROOT::VecOps::ArgMax(good_lep)")\
.Filter("GoodElectronOrMuon(lep_type[idx], lep_pt[idx], lep_eta[idx], lep_phi[idx], lep_E[idx], lep_trackd0pvunbiased[idx], lep_tracksigd0pvunbiased[idx], lep_z0[idx])")
Plugin No such file or directory loading sec.protocol libXrdSeckrb5-5.so
Apply luminosity, scale factors and MC weights for simulated events
for s in samples:
if "data" in s:
df[s] = df[s].Define("weight", "1.0")
else:
df[s] = df[s].Define("weight", "scaleFactor_ELE * scaleFactor_MUON * scaleFactor_LepTRIGGER * scaleFactor_PILEUP * mcWeight * {} / {} * {}".format(xsecs[s], sumws[s], lumi))
Compute transverse mass of the W boson using the lepton and the missing transverse energy and make a histogram
ROOT.gInterpreter.Declare("""
float ComputeTransverseMass(float met_et, float met_phi, float lep_pt, float lep_eta, float lep_phi, float lep_e)
{
ROOT::Math::PtEtaPhiEVector met(met_et, 0, met_phi, met_et);
ROOT::Math::PtEtaPhiEVector lep(lep_pt, lep_eta, lep_phi, lep_e);
return (met + lep).Mt() / 1000.0;
}
""")
histos = {}
for s in samples:
df[s] = df[s].Define("mt_w", "ComputeTransverseMass(met_et, met_phi, lep_pt[idx], lep_eta[idx], lep_phi[idx], lep_E[idx])")
histos[s] = df[s].Histo1D(ROOT.RDF.TH1DModel(s, "mt_w", 24, 60, 180), "mt_w", "weight")
Run the event loop and merge histograms of the respective processes
RunGraphs allows to run the event loops of the separate RDataFrame graphs concurrently. This results in an improved usage of the available resources if each separate RDataFrame can not utilize all available resources, e.g., because not enough data is available.
ROOT.RDF.RunGraphs([histos[s] for s in samples])
def merge_histos(label):
h = None
for i, d in enumerate(files[label]):
t = histos[d[1]].GetValue()
if i == 0: h = t.Clone()
else: h.Add(t)
h.SetNameTitle(label, label)
return h
data = merge_histos("data")
wjets = merge_histos("wjets")
zjets = merge_histos("zjets")
ttbar = merge_histos("ttbar")
diboson = merge_histos("diboson")
singletop = merge_histos("singletop")
Create the plot
Set styles
ROOT.gROOT.SetStyle("ATLAS")
Create canvas
c = ROOT.TCanvas("c", "", 600, 600)
c.SetTickx(0)
c.SetTicky(0)
c.SetLogy()
Draw stack with MC contributions
stack = ROOT.THStack()
for h, color in zip(
[singletop, diboson, ttbar, zjets, wjets],
[(208, 240, 193), (195, 138, 145), (155, 152, 204), (248, 206, 104), (222, 90, 106)]):
h.SetLineWidth(1)
h.SetLineColor(1)
h.SetFillColor(ROOT.TColor.GetColor(*color))
stack.Add(h)
stack.Draw("HIST")
stack.GetXaxis().SetLabelSize(0.04)
stack.GetXaxis().SetTitleSize(0.045)
stack.GetXaxis().SetTitleOffset(1.3)
stack.GetXaxis().SetTitle("m_{T}^{W#rightarrow l#nu} [GeV]")
stack.GetYaxis().SetTitle("Events")
stack.GetYaxis().SetLabelSize(0.04)
stack.GetYaxis().SetTitleSize(0.045)
stack.SetMaximum(1e10 * args.lumi_scale)
stack.SetMinimum(1)
Draw data
data.SetMarkerStyle(20)
data.SetMarkerSize(1.2)
data.SetLineWidth(2)
data.SetLineColor(ROOT.kBlack)
data.Draw("E SAME")
Add legend
legend = ROOT.TLegend(0.60, 0.65, 0.92, 0.92)
legend.SetTextFont(42)
legend.SetFillStyle(0)
legend.SetBorderSize(0)
legend.SetTextSize(0.04)
legend.SetTextAlign(32)
legend.AddEntry(data, "Data" ,"lep")
legend.AddEntry(wjets, "W+jets", "f")
legend.AddEntry(zjets, "Z+jets", "f")
legend.AddEntry(ttbar, "t#bar{t}", "f")
legend.AddEntry(diboson, "Diboson", "f")
legend.AddEntry(singletop, "Single top", "f")
legend.Draw()
Add ATLAS label
text = ROOT.TLatex()
text.SetNDC()
text.SetTextFont(72)
text.SetTextSize(0.045)
text.DrawLatex(0.21, 0.86, "ATLAS")
text.SetTextFont(42)
text.DrawLatex(0.21 + 0.16, 0.86, "Open Data")
text.SetTextSize(0.04)
text.DrawLatex(0.21, 0.80, "#sqrt{{s}} = 13 TeV, {:.2f} fb^{{-1}}".format(lumi * args.lumi_scale / 1000.0))
<cppyy.gbl.TLatex object at 0x1de17700>
Save the plot
c.SaveAs("df105_WBosonAnalysis.png")
print("Saved figure to df105_WBosonAnalysis.png")
Saved figure to df105_WBosonAnalysis.png
Info in <TCanvas::Print>: png file df105_WBosonAnalysis.png has been created
Draw all canvases
from ROOT import gROOT
gROOT.GetListOfCanvases().Draw()