Multidimensional models: use of tailored pdf as conditional pdfs.s
pdf = gauss(x,f(y),sx | y )
with f(y) = a0 + a1*y
Author: Wouter Verkerke
This notebook tutorial was automatically generated with ROOTBOOK-izer from the macro found in the ROOT repository on Sunday, February 05, 2023 at 11:14 AM.
%%cpp -d
#include "RooRealVar.h"
#include "RooDataSet.h"
#include "RooDataHist.h"
#include "RooGaussian.h"
#include "RooPolyVar.h"
#include "RooProdPdf.h"
#include "RooPlot.h"
#include "TRandom.h"
#include "TCanvas.h"
#include "TAxis.h"
#include "TH1.h"
using namespace RooFit;
RooDataSet *makeFakeDataXY();
Definition of a helper function:
%%cpp -d
RooDataSet *makeFakeDataXY()
{
RooRealVar x("x", "x", -10, 10);
RooRealVar y("y", "y", -10, 10);
RooArgSet coord(x, y);
RooDataSet *d = new RooDataSet("d", "d", RooArgSet(x, y));
for (int i = 0; i < 10000; i++) {
double tmpy = gRandom->Gaus(0, 10);
double tmpx = gRandom->Gaus(0.5 * tmpy, 1);
if (fabs(tmpy) < 10 && fabs(tmpx) < 10) {
x.setVal(tmpx);
y.setVal(tmpy);
d->add(coord);
}
}
return d;
}
Create observables
RooRealVar x("x", "x", -10, 10);
RooRealVar y("y", "y", -10, 10);
Create function f(y) = a0 + a1*y
RooRealVar a0("a0", "a0", -0.5, -5, 5);
RooRealVar a1("a1", "a1", -0.5, -1, 1);
RooPolyVar fy("fy", "fy", y, RooArgSet(a0, a1));
Create gauss(x,f(y),s)
RooRealVar sigma("sigma", "width of gaussian", 0.5, 0.1, 2.0);
RooGaussian model("model", "Gaussian with shifting mean", x, fy, sigma);
Obtain fake external experimental dataset with values for x and y
RooDataSet *expDataXY = makeFakeDataXY();
Make subset of experimental data with only y values
RooDataSet *expDataY = (RooDataSet *)expDataXY->reduce(y);
Generate 10000 events in x obtained from conditional model(x|y) with y values taken from experimental data
RooDataSet *data = model.generate(x, ProtoData(*expDataY));
data->Print();
RooDataSet::modelData[x,y] = 6850 entries
input_line_54:2:2: warning: 'data' shadows a declaration with the same name in the 'std' namespace; use '::data' to reference this declaration RooDataSet *data = model.generate(x, ProtoData(*expDataY)); ^
model.fitTo(*expDataXY, ConditionalObservables(y));
[#1] INFO:Minimization -- RooAbsMinimizerFcn::setOptimizeConst: activating const optimization ********** ** 1 **SET PRINT 1 ********** ********** ** 2 **SET NOGRAD ********** PARAMETER DEFINITIONS: NO. NAME VALUE STEP SIZE LIMITS 1 a0 -5.00000e-01 1.00000e+00 -5.00000e+00 5.00000e+00 2 a1 -5.00000e-01 2.00000e-01 -1.00000e+00 1.00000e+00 3 sigma 5.00000e-01 1.90000e-01 1.00000e-01 2.00000e+00 ********** ** 3 **SET ERR 0.5 ********** ********** ** 4 **SET PRINT 1 ********** ********** ** 5 **SET STR 1 ********** NOW USING STRATEGY 1: TRY TO BALANCE SPEED AGAINST RELIABILITY ********** ** 6 **MIGRAD 1500 1 ********** FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 FCN=421420 FROM MIGRAD STATUS=INITIATE 12 CALLS 13 TOTAL EDM= unknown STRATEGY= 1 NO ERROR MATRIX EXT PARAMETER CURRENT GUESS STEP FIRST NO. NAME VALUE ERROR SIZE DERIVATIVE 1 a0 -5.00000e-01 1.00000e+00 2.02430e-01 -7.46265e+04 2 a1 -5.00000e-01 2.00000e-01 2.35352e-01 -6.95347e+05 3 sigma 5.00000e-01 1.90000e-01 2.52163e-01 -1.29056e+06 ERR DEF= 0.5 MIGRAD MINIMIZATION HAS CONVERGED. MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. COVARIANCE MATRIX CALCULATED SUCCESSFULLY FCN=9659.64 FROM MIGRAD STATUS=CONVERGED 101 CALLS 102 TOTAL EDM=8.18253e-05 STRATEGY= 1 ERROR MATRIX ACCURATE EXT PARAMETER STEP FIRST NO. NAME VALUE ERROR SIZE DERIVATIVE 1 a0 9.03100e-03 1.19768e-02 1.62548e-04 -2.31829e+00 2 a1 5.02815e-01 2.21631e-03 1.74026e-04 -2.33580e+00 3 sigma 9.91234e-01 8.46817e-03 6.05957e-04 -4.27913e-01 ERR DEF= 0.5 EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 1.434e-04 1.880e-07 4.948e-08 1.880e-07 4.912e-06 8.995e-09 4.948e-08 8.995e-09 7.171e-05 PARAMETER CORRELATION COEFFICIENTS NO. GLOBAL 1 2 3 1 0.00710 1.000 0.007 0.000 2 0.00710 0.007 1.000 0.000 3 0.00068 0.000 0.000 1.000 ********** ** 7 **SET ERR 0.5 ********** ********** ** 8 **SET PRINT 1 ********** ********** ** 9 **HESSE 1500 ********** COVARIANCE MATRIX CALCULATED SUCCESSFULLY FCN=9659.64 FROM HESSE STATUS=OK 16 CALLS 118 TOTAL EDM=8.17764e-05 STRATEGY= 1 ERROR MATRIX ACCURATE EXT PARAMETER INTERNAL INTERNAL NO. NAME VALUE ERROR STEP SIZE VALUE 1 a0 9.03100e-03 1.19768e-02 3.25095e-05 1.80620e-03 2 a1 5.02815e-01 2.21631e-03 3.48052e-05 2.61474e+00 3 sigma 9.91234e-01 8.46818e-03 1.21191e-04 -6.18987e-02 ERR DEF= 0.5 EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=0.5 1.434e-04 1.880e-07 2.151e-09 1.880e-07 4.912e-06 2.334e-10 2.151e-09 2.334e-10 7.171e-05 PARAMETER CORRELATION COEFFICIENTS NO. GLOBAL 1 2 3 1 0.00708 1.000 0.007 0.000 2 0.00708 0.007 1.000 0.000 3 0.00002 0.000 0.000 1.000 [#1] INFO:Minimization -- RooAbsMinimizerFcn::setOptimizeConst: deactivating const optimization
Plot x distribution of data and projection of model on x = 1/Ndata sum(data(y_i)) model(x;y_i)
RooPlot *xframe = x.frame();
expDataXY->plotOn(xframe);
model.plotOn(xframe, ProjWData(*expDataY));
[#1] INFO:Plotting -- RooAbsReal::plotOn(model) plot on x averages using data variables (y) [#1] INFO:Plotting -- RooDataWeightedAverage::ctor(modelDataWgtAvg) constructing data weighted average of function model_Norm[x] over 6850 data points of (y) with a total weight of 6850 .........................................................................................................................................................................................................
Speed up (and approximate) projection by using binned clone of data for projection
RooAbsData *binnedDataY = expDataY->binnedClone();
model.plotOn(xframe, ProjWData(*binnedDataY), LineColor(kCyan), LineStyle(kDotted));
[#1] INFO:Plotting -- RooAbsReal::plotOn(model) plot on x averages using data variables (y) [#1] INFO:Plotting -- RooDataWeightedAverage::ctor(modelDataWgtAvg) constructing data weighted average of function model_Norm[x] over 100 data points of (y) with a total weight of 6850 .........................................................................................................................................................................................................
Show effect of projection with too coarse binning
((RooRealVar *)expDataY->get()->find("y"))->setBins(5);
RooAbsData *binnedDataY2 = expDataY->binnedClone();
model.plotOn(xframe, ProjWData(*binnedDataY2), LineColor(kRed));
[#1] INFO:Plotting -- RooAbsReal::plotOn(model) plot on x averages using data variables (y) [#1] INFO:Plotting -- RooDataWeightedAverage::ctor(modelDataWgtAvg) constructing data weighted average of function model_Norm[x] over 5 data points of (y) with a total weight of 6850 .................................................................................................................................................................................................................................................
Make canvas and draw RooPlots
new TCanvas("rf303_conditional", "rf303_conditional", 600, 460);
gPad->SetLeftMargin(0.15);
xframe->GetYaxis()->SetTitleOffset(1.2);
xframe->Draw();
Draw all canvases
%jsroot on
gROOT->GetListOfCanvases()->Draw()