Rf 4 0 7_Latextables

Data and categories: latex printing of lists and sets of RooArgSets

Author: Clemens Lange, Wouter Verkerke (C++ version)
This notebook tutorial was automatically generated with ROOTBOOK-izer from the macro found in the ROOT repository on Wednesday, January 19, 2022 at 10:22 AM.

In [ ]:
import ROOT

Setup composite pdf

Declare observable x

In [ ]:
x = ROOT.RooRealVar("x", "x", 0, 10)

Create two Gaussian PDFs g1(x,mean1,sigma) anf g2(x,mean2,sigma) and their parameters

In [ ]:
mean = ROOT.RooRealVar("mean", "mean of gaussians", 5)
sigma1 = ROOT.RooRealVar("sigma1", "width of gaussians", 0.5)
sigma2 = ROOT.RooRealVar("sigma2", "width of gaussians", 1)
sig1 = ROOT.RooGaussian("sig1", "Signal component 1", x, mean, sigma1)
sig2 = ROOT.RooGaussian("sig2", "Signal component 2", x, mean, sigma2)

Sum the signal components into a composite signal pdf

In [ ]:
sig1frac = ROOT.RooRealVar("sig1frac", "fraction of component 1 in signal", 0.8, 0.0, 1.0)
sig = ROOT.RooAddPdf("sig", "Signal", [sig1, sig2], [sig1frac])

Build Chebychev polynomial pdf

In [ ]:
a0 = ROOT.RooRealVar("a0", "a0", 0.5, 0.0, 1.0)
a1 = ROOT.RooRealVar("a1", "a1", -0.2, 0.0, 1.0)
bkg1 = ROOT.RooChebychev("bkg1", "Background 1", x, [a0, a1])

Build expontential pdf

In [ ]:
alpha = ROOT.RooRealVar("alpha", "alpha", -1)
bkg2 = ROOT.RooExponential("bkg2", "Background 2", x, alpha)

Sum the background components into a composite background pdf

In [ ]:
bkg1frac = ROOT.RooRealVar("sig1frac", "fraction of component 1 in background", 0.2, 0.0, 1.0)
bkg = ROOT.RooAddPdf("bkg", "Signal", [bkg1, bkg2], [sig1frac])

Sum the composite signal and background

In [ ]:
bkgfrac = ROOT.RooRealVar("bkgfrac", "fraction of background", 0.5, 0.0, 1.0)
model = ROOT.RooAddPdf("model", "g1+g2+a", [bkg, sig], [bkgfrac])

Make list of parameters before and after fit

Make list of model parameters

In [ ]:
params = model.getParameters({x})

Save snapshot of prefit parameters

In [ ]:
initParams = params.snapshot()

Do fit to data, obtain error estimates on parameters

In [ ]:
data = model.generate({x}, 1000)
model.fitTo(data)

Print parameter list in LaTeX for (one column with names, column with values)

In [ ]:
params.printLatex()

Print parameter list in LaTeX for (names values|names values)

In [ ]:
params.printLatex(Columns=2)

Print two parameter lists side by side (name values initvalues)

In [ ]:
params.printLatex(Sibling=initParams)

Print two parameter lists side by side (name values initvalues|name values initvalues)

In [ ]:
params.printLatex(Sibling=initParams, Columns=2)

Write LaTex table to file

In [ ]:
params.printLatex(Sibling=initParams, OutputFile="rf407_latextables.tex")