# rf607_fitresult¶

Likelihood and minimization: demonstration of options of the RooFitResult class

Author: Wouter Verkerke
This notebook tutorial was automatically generated with ROOTBOOK-izer from the macro found in the ROOT repository on Sunday, November 27, 2022 at 11:08 AM.

In [ ]:
%%cpp -d
#include "RooRealVar.h"
#include "RooDataSet.h"
#include "RooGaussian.h"
#include "RooChebychev.h"
#include "RooFitResult.h"
#include "TCanvas.h"
#include "TAxis.h"
#include "RooPlot.h"
#include "TFile.h"
#include "TStyle.h"
#include "TH2.h"
#include "TMatrixDSym.h"

using namespace RooFit;


## Create pdf, data¶

Declare observable x

In [ ]:
RooRealVar x("x", "x", 0, 10);


Create two Gaussian PDFs g1(x,mean1,sigma) anf g2(x,mean2,sigma) and their parameters

In [ ]:
RooRealVar mean("mean", "mean of gaussians", 5, -10, 10);
RooRealVar sigma1("sigma1", "width of gaussians", 0.5, 0.1, 10);
RooRealVar sigma2("sigma2", "width of gaussians", 1, 0.1, 10);

RooGaussian sig1("sig1", "Signal component 1", x, mean, sigma1);
RooGaussian sig2("sig2", "Signal component 2", x, mean, sigma2);


Build Chebychev polynomial pdf

In [ ]:
RooRealVar a0("a0", "a0", 0.5, 0., 1.);
RooRealVar a1("a1", "a1", -0.2);
RooChebychev bkg("bkg", "Background", x, RooArgSet(a0, a1));


Sum the signal components into a composite signal pdf

In [ ]:
RooRealVar sig1frac("sig1frac", "fraction of component 1 in signal", 0.8, 0., 1.);
RooAddPdf sig("sig", "Signal", RooArgList(sig1, sig2), sig1frac);


Sum the composite signal and background

In [ ]:
RooRealVar bkgfrac("bkgfrac", "fraction of background", 0.5, 0., 1.);
RooAddPdf model("model", "g1+g2+a", RooArgList(bkg, sig), bkgfrac);


Generate 1000 events

In [ ]:
RooDataSet *data = model.generate(x, 1000);


## Fit pdf to data, save fitresult¶

Perform fit and save result

In [ ]:
RooFitResult *r = model.fitTo(*data, Save());


Summary printing: Basic info plus final values of floating fit parameters

In [ ]:
r->Print();


Verbose printing: Basic info, values of constant parameters, initial and final values of floating parameters, global correlations

In [ ]:
r->Print("v");


## Visualize correlation matrix¶

Construct 2D color plot of correlation matrix

In [ ]:
gStyle->SetOptStat(0);
TH2 *hcorr = r->correlationHist();


Visualize ellipse corresponding to single correlation matrix element

In [ ]:
RooPlot *frame = new RooPlot(sigma1, sig1frac, 0.45, 0.60, 0.65, 0.90);
frame->SetTitle("Covariance between sigma1 and sig1frac");
r->plotOn(frame, sigma1, sig1frac, "ME12ABHV");


## Access fit result information¶

Access basic information

In [ ]:
cout << "EDM = " << r->edm() << endl;
cout << "-log(L) at minimum = " << r->minNll() << endl;


Access list of final fit parameter values

In [ ]:
cout << "final value of floating parameters" << endl;
r->floatParsFinal().Print("s");


Access correlation matrix elements

In [ ]:
cout << "correlation between sig1frac and a0 is  " << r->correlation(sig1frac, a0) << endl;
cout << "correlation between bkgfrac and mean is " << r->correlation("bkgfrac", "mean") << endl;


Extract covariance and correlation matrix as TMatrixDSym

In [ ]:
const TMatrixDSym &cor = r->correlationMatrix();
const TMatrixDSym &cov = r->covarianceMatrix();


Print correlation, covariance matrix

In [ ]:
cout << "correlation matrix" << endl;
cor.Print();
cout << "covariance matrix" << endl;
cov.Print();


## Persist fit result in root file¶

Open new ROOT file save save result

In [ ]:
TFile f("rf607_fitresult.root", "RECREATE");
r->Write("rf607");
f.Close();


In a clean ROOT session retrieve the persisted fit result as follows: RooFitResult* r = gDirectory->Get("rf607") ;

In [ ]:
TCanvas *c = new TCanvas("rf607_fitresult", "rf607_fitresult", 800, 400);
c->Divide(2);
c->cd(1);

gROOT->GetListOfCanvases()->Draw()