'Number Counting Utils' RooStats tutorial

This tutorial shows an example of the RooStats standalone utilities that calculate the p-value or Z value (eg. significance in 1-sided Gaussian standard deviations) for a number counting experiment. This is a hypothesis test between background only and signal-plus-background. The background estimate has uncertainty derived from an auxiliary or sideband measurement.

Documentation for these utilities can be found here: http://root.cern.ch/root/html/RooStats__NumberCountingUtils.html

This problem is often called a proto-type problem for high energy physics. In some references it is referred to as the on/off problem.

The problem is treated in a fully frequentist fashion by interpreting the relative background uncertainty as being due to an auxiliary or sideband observation that is also Poisson distributed with only background. Finally, one considers the test as a ratio of Poisson means where an interval is well known based on the conditioning on the total number of events and the binomial distribution. For more on this, see

- http://arxiv.org/abs/0905.3831
- http://arxiv.org/abs/physics/physics/0702156
- http://arxiv.org/abs/physics/0511028

**Author:** Kyle Cranmer

*This notebook tutorial was automatically generated with ROOTBOOK-izer from the macro found in the ROOT repository on Monday, May 29, 2023 at 09:33 AM.*

In [1]:

```
%%cpp -d
#include "RooStats/RooStatsUtils.h"
#include <iostream>
using namespace RooFit;
using namespace RooStats; // the utilities are in the RooStats namespace
using namespace std;
```

From the root prompt, you can see the full list of functions by using tab-completion

```
{.bash}
root [0] RooStats::NumberCountingUtils:: <tab>
BinomialExpZ
BinomialWithTauExpZ
BinomialObsZ
BinomialWithTauObsZ
BinomialExpP
BinomialWithTauExpP
BinomialObsP
BinomialWithTauObsP
```

For each of the utilities you can inspect the arguments by tab completion

```
{.bash}
root [1] NumberCountingUtils::BinomialExpZ( <tab>
Double_t BinomialExpZ(Double_t sExp, Double_t bExp, Double_t fractionalBUncertainty)
```

Expected p-values and significance with background uncertainty

In [2]:

```
double sExpected = 50;
double bExpected = 100;
double relativeBkgUncert = 0.1;
double pExp = NumberCountingUtils::BinomialExpP(sExpected, bExpected, relativeBkgUncert);
double zExp = NumberCountingUtils::BinomialExpZ(sExpected, bExpected, relativeBkgUncert);
cout << "expected p-value =" << pExp << " Z value (Gaussian sigma) = " << zExp << endl;
```

expected p-value =0.00094165 Z value (Gaussian sigma) = 3.10804

Expected p-values and significance with background uncertainty

In [3]:

```
double observed = 150;
double pObs = NumberCountingUtils::BinomialObsP(observed, bExpected, relativeBkgUncert);
double zObs = NumberCountingUtils::BinomialObsZ(observed, bExpected, relativeBkgUncert);
cout << "observed p-value =" << pObs << " Z value (Gaussian sigma) = " << zObs << endl;
```

observed p-value =0.00094165 Z value (Gaussian sigma) = 3.10804

Usage:

```
{.bash}
root [0] RooStats::NumberCountingUtils::BinomialWithTauExpP(
Double_t BinomialWithTauExpP(Double_t sExp, Double_t bExp, Double_t tau)
```

Expected p-values and significance with background uncertainty

In [4]:

```
double tau = 1;
double pExpWithTau = NumberCountingUtils::BinomialWithTauExpP(sExpected, bExpected, tau);
double zExpWithTau = NumberCountingUtils::BinomialWithTauExpZ(sExpected, bExpected, tau);
cout << "expected p-value =" << pExpWithTau << " Z value (Gaussian sigma) = " << zExpWithTau << endl;
```

expected p-value =0.00094165 Z value (Gaussian sigma) = 3.10804

Expected p-values and significance with background uncertainty

In [5]:

```
double pObsWithTau = NumberCountingUtils::BinomialWithTauObsP(observed, bExpected, tau);
double zObsWithTau = NumberCountingUtils::BinomialWithTauObsZ(observed, bExpected, tau);
cout << "observed p-value =" << pObsWithTau << " Z value (Gaussian sigma) = " << zObsWithTau << endl;
```

observed p-value =0.00094165 Z value (Gaussian sigma) = 3.10804