# Example: Filling grids with (distinct) polyominos¶

This GAMS program is about polyominos. These are two-dimensional figures consisting of some units (1x1 squares). These units are connected at the edges. To better imagine them, the picture below shows how so-called pentominos (polyominos consiting of five units) look like.

In [1]:
from IPython.display import Image
Image(filename="Pentominos.png")

Out[1]:

As you can see, every polyomino has one marked unit which during the following steps is necessary. It could be called the root of a polyomino. There are twelve different pentominos if reflections and rotations are not specified. The issue is now to fill at the best a grid using some of these polyominos. Here it is possible to exclude both considering the symmetries and using a polyomino only once.

### The algebraic model¶

Before starting to explain the GAMS code, the model, based on [1], is presented.

Objective function: $$\sum_{(i,j)}y(i,j) \rightarrow \text{max}$$

Constraint ensuring that at $(i,j)$ there is no overlapping. For a better understanding of the here appearing set $cover$ see the implementation below. $$\forall (i,j): \ \ \ y_{i,j} = \sum_{(i,j,p,s)|_{cover(i,j,p,s,i',j')}}x_{p,s,i,j}$$

Alternative constraint to avoid repeated use of one polyomino: $$\forall p: \ \ \ \sum_{i,j,s}x_{p,s,i,j} \le 1$$

Definition of the $x$ and the $y$ variables: $$x_{p,s,i,j} = \begin{cases} 1 & \text{if polyomino p with its symmetry s has its root at (i,j)}\\ 0 & \text{otherwise} \end{cases}$$

$$y_{i,j} = \begin{cases} 1 & \text{if (i,j) is covered by a figure }\\ 0 & \text{otherwise} \end{cases}$$

### Implementation in GAMS¶

In [2]:
%load_ext gams_magic


#### Including polyominos¶

First it is possible to enter arbitrary polyominos. You can do this in the way presented below, i.e. 1 stands for that you want to use the according unit for your polyomino. Otherwise you leave the table entry empty. Note that rotations and the reflections as well can automatically included at the next step. You can add as many polyominos as you like.

In [3]:
%%gams

set p, xs, ys;
table tab(p<,xs<,ys<)
y1  y2  y3  y4  y5
p1.x1   1   1   1   1   1

p2.x1   1
p2.x2   1   1   1   1

p3.x1           1
p3.x2   1   1   1
p3.x3           1

p4.x1           1
p4.x2   1   1   1
p4.x3       1

p5.x1   1   1   1
p5.x2       1   1

p6.x1       1
p6.x2   1   1   1
p6.x3       1

p7.x1   1
p7.x2   1
p7.x3   1   1   1

p8.x1       1
p8.x2   1   1   1   1

p9.x1   1   1
p9.x2       1   1   1

p10.x1          1
p10.x2      1   1
p10.x3  1   1

p11.x1      1   1
p11.x2      1
p11.x3  1   1

p12.x1  1       1
p12.x2  1   1   1

;

scalar maxNZ;
height(p) = smax((xs,ys)tab(p,xs,ys), ord(xs)); maxLength(p) = height(p); loop(p, if(width(p)>height(p), maxLength(p) = width(p); ) ); loop(p, pend(p) = pend(p-1) + width(p) + 1; ); finHeight = smax(p, height(p)); finWidth = smax(p, pend(p));  Now we turn into Python programming. The function colorElements returns a attitude applied on a dataframe cell. If the value is not 0, the background color is set on a random color. Otherwise the font color is changed to white. In [5]: import random def colorElements(val): random.seed(val) if val != 0: color = 'rgb(%d, %d, %d)' %(random.randint(0, 255), random.randint(0, 255), random.randint(0, 255)) return 'background-color: %s' % color else: return 'color: white'  As a next step, the numpy array ar_p is declared and initialized by the entries out of the GAMS table tab. When this has happened, the array is transformed to the dataframe df which is displayed with applying the function colorElements. In [6]: %gams_pull xs ys pend finWidth finHeight tab import numpy as np import pandas as pd ar_p = np.zeros((int(finHeight[0]),int(finWidth[0])-1)) start = 0; for p in zip(pend,range(0,len(pend))): for x in zip(xs,range(0,len(xs))): for y in zip(ys,range(0,len(ys))): if (p[0][0],x[0],y[0],1.0) in tab: ar_p[x[1],start+y[1]] = p[1]+1; start = int(p[0][1]) df = pd.DataFrame(ar_p) display(df.style .set_properties(subset=np.arange(int(finWidth[0])-1), **{'min-width': '25px', 'text-align': 'center'} ) .set_caption('Your included polyominos') .applymap(colorElements))  Your included polyominos 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 0 1 1 1 1 1 0 2 0 0 0 0 0 0 3 0 0 0 4 0 5 5 5 0 0 6 0 0 7 0 0 0 0 8 0 0 0 9 9 0 0 0 0 0 10 0 0 11 11 0 12 0 12 1 0 0 0 0 0 0 2 2 2 2 0 3 3 3 0 4 4 4 0 0 5 5 0 6 6 6 0 7 0 0 0 8 8 8 8 0 0 9 9 9 0 0 10 10 0 0 11 0 0 12 12 12 2 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 4 0 0 0 0 0 0 0 6 0 0 7 7 7 0 0 0 0 0 0 0 0 0 0 0 10 10 0 0 11 11 0 0 0 0 0 #### Initializing the grid size¶ Now you should initialize compile time variables which can be used to generate still necessary sets. First, you can define the dimensions of your grid: MAXI indicates the number of rows of the grid and MAXJ the number of columns, respectively. The number MAXNZ stands for the maximal number of units a included polyomino contains and is already calculated. In [7]: %%gamssetglobal MAXI 12
$setglobal MAXJ 5$eval      MAXNZ maxNZ

Sets
p   'the polyominos'
s   'different symmetries of a polyomino'        / s1*s8 /
i   'rows of the grid'                           / i1*i%MAXI% /
j   'columns of the grid'                        / j1*j%MAXJ% /
n   'number of units in a polymino'              / n1*n%MAXNZ% /
rc  'row and column indicator'                   / r,c /
;


#### Constructing the parameter coordDelta¶

Now the parameter coordDelta is initialized. For every unit of the $n$ possible units of a polyomino $p$ it should contain the difference between the roots and the units coordinates. Therefore, we have to determine the root for every polyomino. This can be realized by using the singleton set root. By using the option statement strictSingleton=0, it is possible to initialize the set with more than just one element. The set takes the first fitting one. To find this first element, we consider the table tab with the included polyominos. In the same way we initialize the set xy with allowing more than one element. Hence for every polyomino $p$ xy contains all desired units as in the table tab defined.

Afterwards the set xyn is initialized using the option statement IndexMatching. This set is a subset of the cartesian product of xy and n. It only contains the tuples with the same index, i.e. the desired units of the included polyomino are counted and connected to the one element of the set n having the same index (for more information see the GAMS documentation). Now we can loop through all units and the root of every polyomino and initialize the according element of the set coordDelta. Note that here only the first symmetry of a polyomino, if you like the original one, is initialzed.

In [8]:
%%gams
parameter coordDelta(p,s,rc,n) 'coordinate delta of every unit of every included polyomino';
set xy(xs,ys), xyn(xs,ys,n);
alias (xs,xsRoot), (ys,ysRoot);

singleton set root(xs,ys);
option strictSingleton=0;

loop(p,
root(xsRoot,ysRoot) = tab(p,xsRoot,ysRoot);
xy(xs,ys) = tab(p,xs,ys);
option xyn(xy:n);
loop((xyn(xs,ys,n),root(xsRoot,ysRoot)),
coordDelta(p,'s1','r',n)=ord(xs)-ord(xsRoot);
coordDelta(p,'s1','c',n)=ord(ys)-ord(ysRoot);
);
);


#### Constructing the symmetries of the polyominos

As the next step, you have the choice to permit using a polyonmino more than once and symmetries. In order to realize the former, you can set the scalar selectOnce on 1. If you want to include the symmetries, you should set the scalar withSym on 1. Otherwise the symmetries are not calculated. There are overall $2^3 = 8$ symmetries. Even though they might be the same among each other, all eight possible symmetries are estimated for every included polyomino. The first version $s1$ is just the same as the included polyomino. Three versions $s2$, $s3$ and $s4$ follow, each of them generated by rotating the previous one 90 degrees. The last four symmetries $s5$, $s6$, $s7$ and $s8$ are given by the vertical reflections of the symmetries $s1$ to $s4$.

In [9]:
%gams scalar withSym / 1 /, selectOnce / 1 /;

In [10]:
%%gams

set ps_map(p,s); ps_map(p,'s1') = yes;

alias (rc,rcp);

Parameter symData(s,rc,rcp) /
s2.(r.c -1, c.r  1) # rotate 90 degrees
s3.(r.r -1, c.c -1) # rotate 180 degrees
s4.(r.c  1, c.r -1) # rotate 270 degrees
s5.(r.r  1, c.c -1) # reflect on y
s6.(r.c -1, c.r -1) # rotate 90 degrees and reflect on y
s7.(r.r -1, c.c  1) # rotate 180 degrees and reflect on y
s8.(r.c  1, c.r  1) # rotate 270 degrees and reflect on y
/;

if(withSym = 1,
loop((s,rc,rcp)$symData(s,rc,rcp), coordDelta(p,s,rc,n) = symData(s,rc,rcp)*coordDelta(p,'s1',rcp,n); ); ps_map(p,s) = yes; );  #### Determining some useful parameters¶ Now every possible figure can be identificated by a tuple$(p,s)$where$p$is the polyomino and$s$is the symmetry version of$p$. It is now necessary to further anlayze the figures. Therefore, for every figure$(p,s)$the necessary distances up, down, left and right are estimated. The values can be won out of the table coordDelta. In [11]: %%gams Parameters disU(p,s) 'Distance up' disR(p,s) 'Distance right' disD(p,s) 'Distance down' disL(p,s) 'Distance left' ; disU(p,s) = smax( n, -1*coordDelta(p,s,'r',n) ); disR(p,s) = smax( n, coordDelta(p,s,'c',n) ); disD(p,s) = smax( n, coordDelta(p,s,'r',n) ); disL(p,s) = smax( n, -1*coordDelta(p,s,'c',n) );  #### Visualization of the symmetries¶ In order to give a better imagination of the created symmetries, they are displayed for one polyomino. You can choose the polyomino you want by changing the scalar polyN. In [12]: %gams scalar polyN 'show polyomino number ' / 10 /;  In [13]: %%gams scalar rows 'how many rows are necessary to display the symmetries of polyomino %polyN%' ; scalar cols 'how many columns are necessary to display the symmetries of polyomino %polyN%' ; rows = sum( p$(ord(p)=polyN), maxLength(p)             );
cols = sum( p$(ord(p)=polyN), 4*width(p)+4*height(p)+7 );  In [14]: %%gams$eval ROWS rows
$eval COLS cols set a / a1*a%ROWS% / b / b1*b%COLS% /; parameter sym(a,b); scalar cc 'current column' / -1 /; loop(ps_map(p,s)$(ord(p)=polyN),
cc = cc+disL(p,s)+2;
loop(n,
loop((a,b)(ord(a)=disU(p,s)+1 and ord(b)=cc), sym(a+(coordDelta(p,s,'r',n)),b+(coordDelta(p,s,'c',n))) = ord(p); ); ); cc = cc+disR(p,s); );  In [15]: %gams_pull maxLength a b sym cc polyN dataA = np.zeros((int(maxLength[ int(polyN[0])-1 ][1]),int(cc[0]))) for x in sym: dataA[a.index(x[0])][b.index(x[1])] = int(x[2]) df = pd.DataFrame(data=dataA, index=np.arange((int(maxLength[int(polyN[0])-1][1]))), columns=np.arange(int(cc[0])) ) display(df.style .set_caption('The symmetries of the polyomino %d' %int(polyN[0])) .set_properties(subset=np.arange(int(cc[0])), **{'min-width': '25px', 'text-align': 'center'}) .applymap(colorElements))  The symmetries of the polyomino 10 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 0 0 0 10 0 10 10 0 0 0 10 10 0 10 0 0 0 10 0 0 0 0 10 10 0 10 10 0 0 0 0 10 1 0 10 10 0 0 10 10 0 10 10 0 0 10 10 0 0 10 10 0 0 10 10 0 0 0 10 10 0 0 10 10 2 10 10 0 0 0 0 10 0 10 0 0 0 0 10 10 0 0 10 10 0 10 0 0 0 0 0 10 0 10 10 0 #### Constructing the set cover¶ Now the set cover is constructed. To do this, we need to run twice through the grid hence both sets i and j get a new name by the alias statement. At the end, for all grid coordinates(ii,jj)$cover shall contain all combinations of polyominos$(p,s)$and coordinates$(i,j)$so that$(p,s)$with root at$(i,j)$can cover$(ii,jj)$. In [16]: %%gams alias (i,ii), (j,jj); set cover(ii,jj,p,s,i,j) 'figure (p,s) starting at (i,j) which can cover (ii,jj)' ; loop(ps_map(p,s), loop((i,j)$(ord(i)>disU(p,s) and ord(i)<=%MAXI%-disD(p,s) and ord(j)>disL(p,s) and ord(j)<=%MAXJ%-disR(p,s)),
loop(n,
cover( i,j,p,s,i+coordDelta(p,s,'r',n),j+coordDelta(p,s,'c',n)) = yes;
);
);
);


#### Implementation of the model¶

As you have already read above there are two binary variables. Furthermore, here you can see the implementation of the equations.

In [17]:
%%gams

binary variables
x(p,s,i,j)  'if at (i,j) the figure (p,s) starts'
y(i,j)      'if (i,j) is covered by any (p,s)'
;
free variable obj;

equations
defObj            'Objective function'
noOverlap(ii,jj)  'ensures that no grid element is covered multiple times'
useOnlyOnce(p)    'ensures that each figure is only used once'
;

defObj..           obj =E= sum((i,j), y(i,j));

noOverlap(ii,jj).. y(ii,jj) =E= sum(cover(i,j,p,s,ii,jj), x(p,s,i,j));

useOnlyOnce(p)$selectOnce.. sum((s,i,j), x(p,s,i,j) ) =L= 1;  #### Solve the model¶ In [18]: %gams model poly / all /;  In [19]: %%gams *option limrow = 0; option optcr = 0; option solver = cplex; option reslim=6000; solve poly using MIP max obj;  Out[19]: Solver Status Model Status Objective #equ #var Model Type Solver Solver Time 0 Normal (1) Optimal Global (1) 60.0 73 5821 MIP CPLEX 1.911 #### Visualization of the solution¶ As a last step, the data is prepared to return of each grid element the index of the covering polyomino. In [20]: %%gams parameter result(i,j); loop((i,j), loop((p,s)$(round(x.l(p,s,i,j))=1),
loop(n,
result(i+coordDelta(p,s,'r',n),j+coordDelta(p,s,'c',n))=ord(p);
);
);
);

In [21]:
%gams_pull i j result
dataA = np.zeros((len(i),len(j)))
for x in result:
dataA[i.index(x[0])][j.index(x[1])] = int(x[2])
df = pd.DataFrame(data=dataA,
index=np.asarray(i),
columns=np.asarray(j))
display(df.style
.set_caption('The result cover of the grid')
.set_properties(subset=j, **{'min-width': '25px', 'text-align': 'center'})
.applymap(colorElements))

The result cover of the grid
j1 j2 j3 j4 j5
i1 11 7 7 7 2
i2 11 11 11 7 2
i3 4 4 11 7 2
i4 9 4 4 2 2
i5 9 4 12 12 12
i6 9 9 12 6 12
i7 1 9 6 6 6
i8 1 5 5 6 8
i9 1 5 5 5 8
i10 1 3 10 8 8
i11 1 3 10 10 8
i12 3 3 3 10 10

#### References¶

[1] Erwin Kalvelagen from Amsterdam Optimization Modeling Group LLC, "Filling rectangles with polyominos" (12/27/2017, link)