Author: J. R. Johansson (robert@riken.jp), https://jrjohansson.github.io/
This lecture series was developed by J.R. Johannson. The original lecture notebooks are available here.
This is a slightly modified version of the lectures, to work with the current release of QuTiP. You can find these lectures as a part of the qutip-tutorials repository. This lecture and other tutorial notebooks are indexed at the QuTiP Tutorial webpage.
import matplotlib.pyplot as plt
import numpy as np
from qutip import (Bloch, about, basis, liouvillian, mesolve, n_thermal,
sigmam, sigmap, sigmax, sigmay, sigmaz, spost, spre)
%matplotlib inline
We follow The theory of open quantum systems, by Breuer and Pretruccione, section 3.4.3 - 3.4.4, which gives the master equation for a two-level system that decays into an environment that is in a squeezed vacuum state:
$\frac{d}{dt}\rho = \gamma_0(N+1)\left(\sigma_-\rho(t)\sigma_+ - \frac{1}{2}\sigma_+\sigma_-\rho(t) - \frac{1}{2}\rho(t)\sigma_+\sigma_-\right)$
$ + \gamma_0 N \left(\sigma_+\rho(t)\sigma_- - \frac{1}{2}\sigma_-\sigma_+\rho(t) - \frac{1}{2}\rho(t)\sigma_-\sigma_+\right)$
$ -\gamma_0 M \sigma_+\rho(t)\sigma_+ -\gamma_0 M^* \sigma_-\rho(t)\sigma_-$
where the parameters $N$ and $M$ describes the temperature and squeezing of the environmental modes:
$\displaystyle N = N_{\rm th} ({\cosh}^2 r + {\sinh}^2 r) + \sinh^2 r$
$\displaystyle M = - \cosh r \sinh r e^{i\theta} (2 N_{\rm th} + 1)$
Alternatively, this master equation can be written in standard Lindblad form,
$\frac{d}{dt}\rho = \gamma_0\left(C\rho(t)C^\dagger - \frac{1}{2}C^\dagger C\rho(t) - \frac{1}{2}\rho(t)C^\dagger C\right)$
where $C = \sigma_-\cosh r + \sigma_+ \sinh r e^{i\theta}$.
Below we will solve these master equations numerically using QuTiP, and visualize at the resulting dynamics.
w0 = 1.0 * 2 * np.pi
gamma0 = 0.05
# the temperature of the environment in frequency units
w_th = 0.0 * 2 * np.pi
# the number of average excitations in the
# environment mode w0 at temperture w_th
Nth = n_thermal(w0, w_th)
Nth
0.0
# squeezing parameter for the environment
r = 1.0
theta = 0.1 * np.pi
N = Nth * (np.cosh(r) ** 2 + np.sinh(r) ** 2) + np.sinh(r) ** 2
N
1.3810978455418155
M = -np.cosh(r) * np.sinh(r) * np.exp(-1j * theta) * (2 * Nth + 1)
M
(-1.7246746122879026+0.5603807511251908j)
# Check, should be zero according to Eq. 3.261 in Breuer and Petruccione
abs(M) ** 2 - (N * (N + 1) - Nth * (Nth + 1))
0.0
sm = sigmam()
sp = sigmap()
H = (
-0.5 * w0 * sigmaz()
) # by adding the hamiltonian here, so we move back to the schrodinger picture
c_ops = [np.sqrt(gamma0 * (N + 1)) * sm, np.sqrt(gamma0 * N) * sp]
Let's first construct the standard part of the Liouvillian, corresponding the unitary contribution and the first two terms in the first master equation given above:
L0 = liouvillian(H, c_ops)
L0
Next we manually construct the Liouvillian for the effect of the squeeing in the environment, which is not on standard form we can therefore not use the liouvillian
function in QuTiP
Lsq = -gamma0 * M * spre(sp) * spost(sp) - gamma0 * \
M.conj() * spre(sm) * spost(sm)
Lsq
The total Liouvillian for the master equation is now
L = L0 + Lsq
L
We can now solve the master equation numerically using QuTiP's mesolve
function:
tlist = np.linspace(0, 50, 1000)
# start in the qubit superposition state
psi0 = (2j * basis(2, 0) + 1 * basis(2, 1)).unit()
e_ops = [sigmax(), sigmay(), sigmaz()]
result1 = mesolve(L, psi0, tlist, [], e_ops)
fig, ax = plt.subplots(figsize=(12, 6))
ax.plot(result1.times, result1.expect[0], "r",
label=r"$\langle\sigma_x\rangle$")
ax.plot(result1.times, result1.expect[1], "g",
label=r"$\langle\sigma_y\rangle$")
ax.plot(result1.times, result1.expect[2], "b",
label=r"$\langle\sigma_z\rangle$")
sz_ss_analytical = -1 / (2 * N + 1)
ax.plot(
result1.times,
sz_ss_analytical * np.ones(result1.times.shape),
"k--",
label=r"$\langle\sigma_z\rangle_s$ analytical",
)
ax.set_ylabel(r"$\langle\sigma_z\rangle$", fontsize=16)
ax.set_xlabel("time", fontsize=16)
ax.legend()
ax.set_ylim(-1, 1);
b = Bloch()
b.add_points(result1.expect, meth="l")
b.show()
We can solve the alternative master equation, which is on the standard Lindblad form, directly using the QuTiP mesolve
function:
c_ops = [np.sqrt(gamma0) *
(sm * np.cosh(r) + sp * np.sinh(r) * np.exp(1j * theta))]
result2 = mesolve(H, psi0, tlist, c_ops, e_ops)
And we can verify that it indeed gives the same results:
fig, ax = plt.subplots(figsize=(12, 6))
ax.plot(result2.times, result2.expect[0], "r",
label=r"$\langle\sigma_x\rangle$")
ax.plot(result2.times, result2.expect[1], "g",
label=r"$\langle\sigma_y\rangle$")
ax.plot(result2.times, result2.expect[2], "b",
label=r"$\langle\sigma_z\rangle$")
sz_ss_analytical = -1 / (2 * N + 1)
ax.plot(
result2.times,
sz_ss_analytical * np.ones(result2.times.shape),
"k--",
label=r"$\langle\sigma_z\rangle_s$ analytical",
)
ax.set_ylabel(r"$\langle\sigma_z\rangle$", fontsize=16)
ax.set_xlabel("time", fontsize=16)
ax.legend()
ax.set_ylim(-1, 1);