Author: J. R. Johansson (robert@riken.jp), https://jrjohansson.github.io/
This lecture series was developed by J.R. Johannson. The original lecture notebooks are available here.
This is a slightly modified version of the lectures, to work with the current release of QuTiP. You can find these lectures as a part of the qutip-tutorials repository. This lecture and other tutorial notebooks are indexed at the QuTiP Tutorial webpage.
import matplotlib.pyplot as plt
import numpy as np
from qutip import (about, coherent_dm, correlation, destroy, fock_dm, mesolve,
qeye, steadystate, tensor)
%matplotlib inline
Consider an oscillator that is interacting with a thermal environment. If the oscillator initially is in a coherent state, it will gradually decay to a thermal (incoherent) state. The amount of coherence can be quantified using the first-order optical coherence function
For a coherent state $|g^{(1)}(\tau)| = 1$, and for a completely incoherent (thermal) state $g^{(1)}(\tau) = 0$.
The following code calculates and plots $g^{(1)}(\tau)$ as a function of $\tau$.
N = 20
taulist = np.linspace(0, 10.0, 200)
a = destroy(N)
H = 2 * np.pi * a.dag() * a
# collapse operator
G1 = 0.75
n_th = 2.00 # bath temperature in terms of excitation number
c_ops = [np.sqrt(G1 * (1 + n_th)) * a, np.sqrt(G1 * n_th) * a.dag()]
# start with a coherent state
rho0 = coherent_dm(N, 2.0)
# first calculate the occupation number as a function of time
n = mesolve(H, rho0, taulist, c_ops, [a.dag() * a]).expect[0]
# calculate the correlation function G1 and normalize with n to obtain g1
G1 = correlation(H, rho0, None, taulist, c_ops, a.dag(), a)
g1 = G1 / np.sqrt(n[0] * n)
/home/runner/work/qutip-tutorials/qutip-tutorials/qutip/qutip/correlation.py:715: FutureWarning: correlation() now legacy, please use correlation_2op_2t() warn("correlation() now legacy, please use correlation_2op_2t()",
fig, axes = plt.subplots(2, 1, sharex=True, figsize=(12, 6))
axes[0].plot(
taulist, np.real(g1), "b",
label=r"First-order coherence function $g^{(1)}(\tau)$"
)
axes[1].plot(taulist, np.real(n), "r", label=r"occupation number $n(\tau)$")
axes[0].legend()
axes[1].legend()
axes[1].set_xlabel(r"$\tau$");
For a coherent state $|g^{(2)}(\tau)| = 1$, and for a thermal state $g^{(2)}(\tau) = 2$ (bunched photons, tend to appear together).
The following code calculates and plots $g^{(2)}(\tau)$ as a function of $\tau$.
def correlation_ss_gtt(H, tlist, c_ops, a_op, b_op, c_op, d_op, rho0=None):
"""
Calculate the correlation function <A(0)B(tau)C(tau)D(0)>
(ss_gtt = steadystate general two-time)
See, Gardiner, Quantum Noise, Section 5.2.1
.. note::
Experimental.
"""
if rho0 is None:
rho0 = steadystate(H, c_ops)
return mesolve(H, d_op * rho0 * a_op, tlist, c_ops,
[b_op * c_op]).expect[0]
# calculate the correlation function G2 and normalize with n to obtain g2
G2 = correlation_ss_gtt(H, taulist, c_ops, a.dag(), a.dag(), a, a, rho0=rho0)
g2 = G2 / n**2
fig, axes = plt.subplots(2, 1, sharex=True, figsize=(12, 6))
axes[0].plot(
taulist, np.real(g2), "b",
label=r"Second-order coherence function $g^{(2)}(\tau)$"
)
axes[1].plot(taulist, np.real(n), "r", label=r"occupation number $n(\tau)$")
axes[0].legend(loc=0)
axes[1].legend()
axes[1].set_xlabel(r"$\tau$");
Definition: Given an observable $Q(t)$ that is bound below and above by $|Q(t)| \leq 1$, the assumptions of
implies that
If $Q$ is at a steady state at the initial time of measurement, we can set $\tau = t_1 = t_2$ and the Leggett-Garg inequality then reads
def leggett_garg(c_mat):
"""
For a given correlation matrix c_mat = <Q(t1+t2)Q(t1)>,
calculate the Leggett-Garg correlation.
"""
N, M = c_mat.shape
lg_mat = np.zeros([N // 2, M // 2], dtype=complex)
lg_vec = np.zeros(N // 2, dtype=complex)
# c_mat(i, j) = <Q(dt i+dt j)Q(dt i)>
# LG = <Q(t_1)Q(0)> + <Q(t_1+t_2)Q(t_1)> - <Q(t_1+t_2)Q(0)>
for i in range(N // 2):
lg_vec[i] = 2 * c_mat[0, i] - c_mat[0, 2 * i]
for j in range(M // 2):
lg_mat[i, j] = c_mat[0, i] + c_mat[i, j] - c_mat[0, i + j]
return lg_mat, lg_vec
References:
wc = 1.0 * 2 * np.pi # cavity frequency
wa = 1.0 * 2 * np.pi # resonator frequency
g = 0.3 * 2 * np.pi # coupling strength
kappa = 0.075 # cavity dissipation rate
gamma = 0.005 # resonator dissipation rate
Na = Nc = 3 # number of cavity fock states
n_th = 0.0 # avg number of thermal bath excitation
tlist = np.linspace(0, 7.5, 251)
tlist_sub = tlist[0:int((len(tlist) / 2))]
# start with an excited resonator
rho0 = tensor(fock_dm(Na, 0), fock_dm(Nc, 1))
a = tensor(qeye(Nc), destroy(Na))
c = tensor(destroy(Nc), qeye(Na))
na = a.dag() * a
nc = c.dag() * c
H = wa * na + wc * nc - g * (a + a.dag()) * (c + c.dag())
# measurement operator on resonator
Q = na # photon number resolving detector
# fock-state |1> detector
# Q = tensor(qeye(Nc), 2 * fock_dm(Na, 1) - qeye(Na))
# click or no-click detector
# Q = tensor(qeye(Nc), qeye(Na) - 2 * fock_dm(Na, 0))
c_op_list = []
rate = kappa * (1 + n_th)
if rate > 0.0:
c_op_list.append(np.sqrt(rate) * c)
rate = kappa * n_th
if rate > 0.0:
c_op_list.append(np.sqrt(rate) * c.dag())
rate = gamma * (1 + n_th)
if rate > 0.0:
c_op_list.append(np.sqrt(rate) * a)
rate = gamma * n_th
if rate > 0.0:
c_op_list.append(np.sqrt(rate) * a.dag())
Using the regression theorem, and QuTiP function correlation
.
corr_mat = correlation(H, rho0, tlist, tlist, c_op_list, Q, Q)
LG_tt, LG_t = leggett_garg(corr_mat)
fig, axes = plt.subplots(1, 2, figsize=(12, 4))
axes[0].pcolor(tlist, tlist, abs(corr_mat), edgecolors="none")
axes[0].set_xlabel(r"$t_1 + t_2$")
axes[0].set_ylabel(r"$t_1$")
axes[0].autoscale(tight=True)
axes[1].pcolor(tlist_sub, tlist_sub, abs(LG_tt), edgecolors="none")
axes[1].set_xlabel(r"$t_1$")
axes[1].set_ylabel(r"$t_2$")
axes[1].autoscale(tight=True)
fig, axes = plt.subplots(1, 1, figsize=(12, 4))
axes.plot(tlist_sub, np.diag(np.real(LG_tt)), label=r"$\tau = t_1 = t_2$")
axes.plot(tlist_sub, np.ones(tlist_sub.shape), "k", label=r"quantum boundary")
axes.fill_between(
tlist_sub,
np.diag(np.real(LG_tt)),
1,
where=(np.diag(np.real(LG_tt)) > 1),
color="green",
alpha=0.5,
)
axes.set_xlim([0, max(tlist_sub)])
axes.legend(loc=0)
axes.set_xlabel(r"$\tau$", fontsize=18)
axes.set_ylabel(r"LG($\tau$)", fontsize=18);
about()
QuTiP: Quantum Toolbox in Python ================================ Copyright (c) QuTiP team 2011 and later. Current admin team: Alexander Pitchford, Nathan Shammah, Shahnawaz Ahmed, Neill Lambert, Eric Giguère, Boxi Li, Jake Lishman, Simon Cross and Asier Galicia. Board members: Daniel Burgarth, Robert Johansson, Anton F. Kockum, Franco Nori and Will Zeng. Original developers: R. J. Johansson & P. D. Nation. Previous lead developers: Chris Granade & A. Grimsmo. Currently developed through wide collaboration. See https://github.com/qutip for details. QuTiP Version: 4.7.1 Numpy Version: 1.22.4 Scipy Version: 1.8.1 Cython Version: 0.29.33 Matplotlib Version: 3.5.2 Python Version: 3.10.4 Number of CPUs: 2 BLAS Info: Generic OPENMP Installed: False INTEL MKL Ext: False Platform Info: Linux (x86_64) Installation path: /home/runner/work/qutip-tutorials/qutip-tutorials/qutip/qutip ================================================================================ Please cite QuTiP in your publication. ================================================================================ For your convenience a bibtex reference can be easily generated using `qutip.cite()`