Author: J. R. Johansson (robert@riken.jp), https://jrjohansson.github.io/
This lecture series was developed by J.R. Johannson. The original lecture notebooks are available here.
This is a slightly modified version of the lectures, to work with the current release of QuTiP. You can find these lectures as a part of the qutip-tutorials repository. This lecture and other tutorial notebooks are indexed at the QuTiP Tutorial webpage.
In adiabatic quantum computing, an easy to prepare ground state of a Hamiltonian $H_0$ is prepared, and then the Hamiltonian is gradually transformed into $H_1$, which is constructed in such a way that the groundstate of $H_1$ encodes the solution to a difficult problem. The transformation of $H_0$ to $H_1$ can for example be written on the form
$\displaystyle H(t) = \lambda(t) H_0 + (1 - \lambda(t)) H_1$
where $\lambda(t)$ is a function that goes from goes from $0$ to $1$ when $t$ goes from $0$ to $t_{\rm final}$.
If this gradual tranformation is slow enough (satisfying the adiabicity critera), the evolution of the system will remain in its ground state.
If the Hamiltonian is transformed from $H_0$ to $H_1$ too quickly, the system will get excited from the ground state the adiabatic computing algorithm fails.
In this notebook we explore the dynamics of a spin Hamiltonian that is transformed from a simple Hamiltonian with an easy to prepare ground state, into a random spin Hamiltonian with a complicated ground state.
import matplotlib.pyplot as plt
import numpy as np
from qutip import (about, basis, mesolve, qeye, qobj_list_evaluate, sigmax,
sigmay, sigmaz, tensor)
%matplotlib inline
N = 6 # number of spins
M = 20 # number of eigenenergies to plot
# array of spin energy splittings and coupling strengths (random values).
h = 1.0 * 2 * np.pi * (1 - 2 * np.random.rand(N))
Jz = 1.0 * 2 * np.pi * (1 - 2 * np.random.rand(N))
Jx = 1.0 * 2 * np.pi * (1 - 2 * np.random.rand(N))
Jy = 1.0 * 2 * np.pi * (1 - 2 * np.random.rand(N))
# increase taumax to get make the sweep more adiabatic
taumax = 5.0
taulist = np.linspace(0, taumax, 100)
# pre-allocate operators
si = qeye(2)
sx = sigmax()
sy = sigmay()
sz = sigmaz()
sx_list = []
sy_list = []
sz_list = []
for n in range(N):
op_list = []
for m in range(N):
op_list.append(si)
op_list[n] = sx
sx_list.append(tensor(op_list))
op_list[n] = sy
sy_list.append(tensor(op_list))
op_list[n] = sz
sz_list.append(tensor(op_list))
psi_list = [basis(2, 0) for n in range(N)]
psi0 = tensor(psi_list)
H0 = 0
for n in range(N):
H0 += -0.5 * 2.5 * sz_list[n]
# energy splitting terms
H1 = 0
for n in range(N):
H1 += -0.5 * h[n] * sz_list[n]
H1 = 0
for n in range(N - 1):
# interaction terms
H1 += -0.5 * Jx[n] * sx_list[n] * sx_list[n + 1]
H1 += -0.5 * Jy[n] * sy_list[n] * sy_list[n + 1]
H1 += -0.5 * Jz[n] * sz_list[n] * sz_list[n + 1]
# the time-dependent hamiltonian in list-function format
args = {"t_max": max(taulist)}
h_t = [
[H0, lambda t, args: (args["t_max"] - t) / args["t_max"]],
[H1, lambda t, args: t / args["t_max"]],
]
#
# callback function for each time-step
#
evals_mat = np.zeros((len(taulist), M))
P_mat = np.zeros((len(taulist), M))
idx = [0]
def process_rho(tau, psi):
# evaluate the Hamiltonian with gradually switched on interaction
H = qobj_list_evaluate(h_t, tau, args)
# find the M lowest eigenvalues of the system
evals, ekets = H.eigenstates(eigvals=M)
evals_mat[idx[0], :] = np.real(evals)
# find the overlap between the eigenstates and psi
for n, eket in enumerate(ekets):
P_mat[idx[0], n] = abs((eket.dag().data * psi.data)[0, 0]) ** 2
idx[0] += 1
# Evolve the system, request the solver to call process_rho at each time step.
mesolve(h_t, psi0, taulist, [], process_rho, args)
Result object with sesolve data. -------------------------------- expect = True num_expect = 1, num_collapse = 0
Plot the energy levels and the corresponding occupation probabilities (encoded as the width of each line in the energy-level diagram).
# rc('font', family='serif')
# rc('font', size='10')
fig, axes = plt.subplots(2, 1, figsize=(12, 10))
#
# plot the energy eigenvalues
#
# first draw thin lines outlining the energy spectrum
for n in range(len(evals_mat[0, :])):
ls, lw = ("b", 1) if n == 0 else ("k", 0.25)
axes[0].plot(taulist / max(taulist), evals_mat[:, n] / (2 * np.pi), ls,
lw=lw)
# second, draw line that encode the occupation probability of each state in
# its linewidth. thicker line => high occupation probability.
for idx in range(len(taulist) - 1):
for n in range(len(P_mat[0, :])):
lw = 0.5 + 4 * P_mat[idx, n]
if lw > 0.55:
axes[0].plot(
np.array([taulist[idx], taulist[idx + 1]]) / taumax,
np.array([evals_mat[idx, n], evals_mat[idx + 1, n]])
/ (2 * np.pi),
"r",
linewidth=lw,
)
axes[0].set_xlabel(r"$\tau$")
axes[0].set_ylabel("Eigenenergies")
axes[0].set_title(
"Energyspectrum (%d lowest values) of a chain of %d spins.\n " % (M, N)
+ "The occupation probabilities are encoded in the red line widths."
)
#
# plot the occupation probabilities for the few lowest eigenstates
#
for n in range(len(P_mat[0, :])):
if n == 0:
axes[1].plot(taulist / max(taulist), 0 + P_mat[:, n], "r", linewidth=2)
else:
axes[1].plot(taulist / max(taulist), 0 + P_mat[:, n])
axes[1].set_xlabel(r"$\tau$")
axes[1].set_ylabel("Occupation probability")
axes[1].set_title(
"Occupation probability of the %d lowest " % M
+ "eigenstates for a chain of %d spins" % N
)
axes[1].legend(("Ground state",));
about()
QuTiP: Quantum Toolbox in Python ================================ Copyright (c) QuTiP team 2011 and later. Current admin team: Alexander Pitchford, Nathan Shammah, Shahnawaz Ahmed, Neill Lambert, Eric Giguère, Boxi Li, Jake Lishman, Simon Cross and Asier Galicia. Board members: Daniel Burgarth, Robert Johansson, Anton F. Kockum, Franco Nori and Will Zeng. Original developers: R. J. Johansson & P. D. Nation. Previous lead developers: Chris Granade & A. Grimsmo. Currently developed through wide collaboration. See https://github.com/qutip for details. QuTiP Version: 4.7.1 Numpy Version: 1.22.4 Scipy Version: 1.8.1 Cython Version: 0.29.33 Matplotlib Version: 3.5.2 Python Version: 3.10.4 Number of CPUs: 2 BLAS Info: Generic OPENMP Installed: False INTEL MKL Ext: False Platform Info: Linux (x86_64) Installation path: /home/runner/work/qutip-tutorials/qutip-tutorials/qutip/qutip ================================================================================ Please cite QuTiP in your publication. ================================================================================ For your convenience a bibtex reference can be easily generated using `qutip.cite()`