J.R. Johansson and P.D. Nation
For more information about QuTiP see http://qutip.org
import matplotlib.pyplot as plt
import numpy as np
from qutip import (Options, about, destroy, expect, num, propagator,
propagator_steadystate, sigmax, sigmaz)
from qutip.ui.progressbar import TextProgressBar as ProgressBar
%matplotlib inline
Landau-Zener-Stuckelberg interferometry: Steady state of a strongly driven two-level system, using the one-period propagator.
# set up the parameters and start calculation
delta = 1.0 * 2 * np.pi # qubit sigma_x coefficient
w = 2.0 * 2 * np.pi # driving frequency
T = 2 * np.pi / w # driving period
gamma1 = 0.00001 # relaxation rate
gamma2 = 0.005 # dephasing rate
eps_list = np.linspace(-20.0, 20.0, 51) * 2 * np.pi
A_list = np.linspace(0.0, 20.0, 51) * 2 * np.pi
# pre-calculate the necessary operators
sx = sigmax()
sz = sigmaz()
sm = destroy(2)
sn = num(2)
# collapse operators: relaxation and dephasing
c_op_list = [np.sqrt(gamma1) * sm, np.sqrt(gamma2) * sz]
# ODE settings (for list-str format)
options = Options()
options.atol = 1e-6 # reduce accuracy to speed
options.rtol = 1e-5 # up the calculation a bit
options.rhs_reuse = True # Compile Hamiltonian only the first time.
# perform the calculation for each combination of eps and A, store the result
# in a matrix
def calculate():
p_mat = np.zeros((len(eps_list), len(A_list)))
H0 = -delta / 2.0 * sx
# Define H1 (first time-dependent term)
# String method:
H1 = [-sz / 2, "eps"]
# Function method:
# H1 = [- sz / 2, lambda t, args: args['eps'] ]
# Define H2 (second time-dependent term)
# String method:
H2 = [sz / 2, "A * sin(w * t)"]
# Function method:
# H2 = [sz / 2, lambda t, args: args['A']*np.sin(args['w'] * t) ]
H = [H0, H1, H2]
pbar = ProgressBar(len(eps_list))
for m, eps in enumerate(eps_list):
pbar.update(m)
for n, A in enumerate(A_list):
args = {"w": w, "A": A, "eps": eps}
U = propagator(H, T, c_op_list, args, options=options)
rho_ss = propagator_steadystate(U)
p_mat[m, n] = np.real(expect(sn, rho_ss))
return p_mat
p_mat = calculate()
11.8%. Run time: 6.82s. Est. time left: 00:00:00:51 21.6%. Run time: 8.93s. Est. time left: 00:00:00:32 31.4%. Run time: 10.92s. Est. time left: 00:00:00:23 41.2%. Run time: 12.75s. Est. time left: 00:00:00:18 51.0%. Run time: 14.54s. Est. time left: 00:00:00:13 60.8%. Run time: 16.32s. Est. time left: 00:00:00:10 70.6%. Run time: 18.07s. Est. time left: 00:00:00:07 80.4%. Run time: 19.97s. Est. time left: 00:00:00:04 90.2%. Run time: 22.09s. Est. time left: 00:00:00:02
fig, ax = plt.subplots(figsize=(8, 8))
A_mat, eps_mat = np.meshgrid(A_list / (2 * np.pi), eps_list / (2 * np.pi))
ax.pcolor(eps_mat, A_mat, p_mat, shading="auto")
ax.set_xlabel(r"Bias point $\epsilon$")
ax.set_ylabel(r"Amplitude $A$")
ax.set_title(
"Steadystate excitation probability\n"
+ r"$H = -\frac{1}{2}\Delta\sigma_x -\frac{1}{2}\epsilon\sigma_z -"
+ r"\frac{1}{2}A\sin(\omega t)$"
+ "\n"
);
about()
QuTiP: Quantum Toolbox in Python ================================ Copyright (c) QuTiP team 2011 and later. Current admin team: Alexander Pitchford, Nathan Shammah, Shahnawaz Ahmed, Neill Lambert, Eric Giguère, Boxi Li, Jake Lishman, Simon Cross and Asier Galicia. Board members: Daniel Burgarth, Robert Johansson, Anton F. Kockum, Franco Nori and Will Zeng. Original developers: R. J. Johansson & P. D. Nation. Previous lead developers: Chris Granade & A. Grimsmo. Currently developed through wide collaboration. See https://github.com/qutip for details. QuTiP Version: 4.7.1 Numpy Version: 1.22.4 Scipy Version: 1.8.1 Cython Version: 0.29.33 Matplotlib Version: 3.5.2 Python Version: 3.10.4 Number of CPUs: 2 BLAS Info: Generic OPENMP Installed: False INTEL MKL Ext: False Platform Info: Linux (x86_64) Installation path: /home/runner/work/qutip-tutorials/qutip-tutorials/qutip/qutip ================================================================================ Please cite QuTiP in your publication. ================================================================================ For your convenience a bibtex reference can be easily generated using `qutip.cite()`