from IPython.display import Image
Image(filename="Figure_4.png",width=600)
Image(filename="Figure_1.png",width=600)
Image(filename="Figure_2.png",width=600)
Image(filename="Figure_3.png",width=600)
Motion model is
$$\dot{x}=vcos\theta$$$$\dot{y}=vsin\theta$$$$\dot{\theta}=\frac{v}{WB}sin(u_{\delta})$$(tan is not good for optimization)
$$\dot{v}=u_a$$Cost function is
$$J=\frac{1}{2}(u_a^2+u_{\delta}^2)-\phi_a d_a-\phi_\delta d_\delta$$Input constraints are
$$|u_a| \leq u_{a,max}$$$$|u_\delta| \leq u_{\delta,max}$$So, Hamiltonian is
$$J=\frac{1}{2}(u_a^2+u_{\delta}^2)-\phi_a d_a-\phi_\delta d_\delta\\ +\lambda_1vcos\theta+\lambda_2vsin\theta+\lambda_3\frac{v}{WB}sin(u_{\delta})+\lambda_4u_a\\ +\rho_1(u_a^2+d_a^2+u_{a,max}^2)+\rho_2(u_\delta^2+d_\delta^2+u_{\delta,max}^2)$$Partial differential equations of the Hamiltonian are:
$\begin{equation*} \frac{\partial H}{\partial \bf{x}}=\\ \begin{bmatrix} \frac{\partial H}{\partial x}= 0&\\ \frac{\partial H}{\partial y}= 0&\\ \frac{\partial H}{\partial \theta}= -\lambda_1vsin\theta+\lambda_2vcos\theta&\\ \frac{\partial H}{\partial v}=-\lambda_1cos\theta+\lambda_2sin\theta+\lambda_3\frac{1}{WB}sin(u_{\delta})&\\ \end{bmatrix} \\ \end{equation*}$
$\begin{equation*} \frac{\partial H}{\partial \bf{u}}=\\ \begin{bmatrix} \frac{\partial H}{\partial u_a}= u_a+\lambda_4+2\rho_1u_a&\\ \frac{\partial H}{\partial u_\delta}= u_\delta+\lambda_3\frac{v}{WB}cos(u_{\delta})+2\rho_2u_\delta&\\ \frac{\partial H}{\partial d_a}= -\phi_a+2\rho_1d_a&\\ \frac{\partial H}{\partial d_\delta}=-\phi_\delta+2\rho_2d_\delta&\\ \end{bmatrix} \\ \end{equation*}$