Cf. http://www.scipy-lectures.org/advanced/image_processing/index.html
import numpy as np
from scipy import misc
f = misc.face()
import matplotlib.pyplot as plt
plt.imshow(f)
plt.show()
<matplotlib.image.AxesImage at 0x7f464ab1dc18>
image_tab = np.array(f)
image_tab.shape
image_tab.dtype
(768, 1024, 3)
dtype('uint8')
def image_rouge_gris(image_tab):
return image_tab[:, :, 0]
image_tab_rouge = image_rouge_gris(image_tab)
image_tab_rouge.shape
image_tab_rouge.dtype
plt.imshow(image_tab_rouge, cmap='gray')
plt.title("Rouge")
(768, 1024)
dtype('uint8')
<matplotlib.image.AxesImage at 0x7f46513f0a90>
Text(0.5, 1.0, 'Rouge')
plt.imshow(image_tab[:,:,1], cmap='gray')
plt.title("Vert")
<matplotlib.image.AxesImage at 0x7f4651355048>
Text(0.5, 1.0, 'Vert')
plt.imshow(image_tab[:,:,2], cmap='gray')
plt.title("Bleu")
<matplotlib.image.AxesImage at 0x7f465132f6a0>
Text(0.5, 1.0, 'Bleu')
def image_rouge(image_tab):
image_tab_rouge = image_tab[:, :, 0]
x, y = np.shape(image_tab_rouge)
dims_3couleurs = (x, y, 3)
image_tab_3couleurs = np.zeros(dims_3couleurs, dtype=np.uint8)
image_tab_3couleurs[:, :, 0] = image_tab_rouge
return image_tab_3couleurs
image_tab_3couleurs = image_rouge(image_tab)
image_tab_3couleurs.shape
image_tab_3couleurs.dtype
plt.imshow(image_tab_3couleurs)
plt.title("Rouge")
(768, 1024, 3)
dtype('uint8')
<matplotlib.image.AxesImage at 0x7f46510c3860>
Text(0.5, 1.0, 'Rouge')
def rotation_90degres(image_tab):
x, y, c = np.shape(image_tab)
image_tab_90degres = np.zeros((y, x, c), dtype=np.uint8)
for i in range(x):
for j in range(y):
image_tab_90degres[j, i, :] = image_tab[i, j, :]
# on peut aussi faire
# for k in range(c):
# image_tab_90degres[:, :, c] = np.transpose(image_tab[:, :, c])
return image_tab_90degres
image_tab_90degres = rotation_90degres(image_tab)
image_tab_90degres.shape
plt.imshow(image_tab_90degres)
plt.title("Rotation 90 degres")
(1024, 768, 3)
<matplotlib.image.AxesImage at 0x7f4651029160>
Text(0.5, 1.0, 'Rotation 90 degres')
def agrandissement(image_tab):
x, y, c = np.shape(image_tab)
image_tab_2fois = np.zeros((2*x, 2*y, c), dtype=np.uint8)
for i in range(x):
for j in range(y):
image_tab_2fois[2*i, 2*j, :] = image_tab[i, j, :]
image_tab_2fois[2*i, 2*j+1, :] = image_tab[i, j, :]
image_tab_2fois[2*i+1, 2*j, :] = image_tab[i, j, :]
image_tab_2fois[2*i+1, 2*j+1, :] = image_tab[i, j, :]
return image_tab_2fois
image_tab_2fois = agrandissement(image_tab)
image_tab_2fois.shape
plt.imshow(image_tab_2fois)
plt.title("Agrandissement 2 fois")
(1536, 2048, 3)
<matplotlib.image.AxesImage at 0x7f46512dae80>
Text(0.5, 1.0, 'Agrandissement 2 fois')
def reduction(image_tab):
x, y, c = np.shape(image_tab)
image_tab_0_5fois = np.zeros((x//2, y//2, c), dtype=np.uint8)
for i in range(x//2):
for j in range(y//2):
image_tab_0_5fois[i, j, :] = (
image_tab[2*i, 2*j, :]
+ image_tab[2*i+1, 2*j, :]
+ image_tab[2*i, 2*j+1, :]
+ image_tab[2*i+1, 2*j+1, :]
) // 4
return image_tab_0_5fois
image_tab_0_5fois = reduction(image_tab)
image_tab_0_5fois.shape
plt.imshow(image_tab_0_5fois, cmap="gray")
plt.title("Réduction 2 fois")
(384, 512, 3)
<matplotlib.image.AxesImage at 0x7f465094eb00>
Text(0.5, 1.0, 'Réduction 2 fois')
image_tab_prime = agrandissement(image_tab_0_5fois)
image_tab_prime.shape
plt.imshow(image_tab_prime)
plt.title("Réduction 2 fois suivi d'un agrandissement 2 fois")
(768, 1024, 3)
<matplotlib.image.AxesImage at 0x7f46508b30f0>
Text(0.5, 1.0, "Réduction 2 fois suivi d'un agrandissement 2 fois")