You see where this is going ... we'll do 2D diffusion now and next we will combine steps 6 and 7 to solve Burgers' equation. So make sure your previous steps work well before continuing.
And here is the 2D-diffusion equation:
$$\frac{\partial u}{\partial t} = \nu \frac{\partial ^2 u}{\partial x^2} + \nu \frac{\partial ^2 u}{\partial y^2}$$You will recall that we came up with a method for discretizing second order derivatives in Step 3, when investigating 1-D diffusion. We are going to use the same scheme here, with our forward difference in time and two second-order derivatives.
Once again, we reorganize the discretized equation and solve for $u_{i,j}^{n+1}$
import numpy
from matplotlib import pyplot
from mpl_toolkits.mplot3d import Axes3D ##library for 3d projection plots
from matplotlib import cm ##cm = "colormap" for changing the 3d plot color palette
%matplotlib inline
###variable declarations
nx = 31
ny = 31
nt = 17
nu=.05
dx = 2/(nx-1)
dy = 2/(ny-1)
sigma = .25
dt = sigma*dx*dy/nu
x = numpy.linspace(0,2,nx)
y = numpy.linspace(0,2,ny)
u = numpy.ones((ny,nx)) ##create a 1xn vector of 1's
un = numpy.ones((ny,nx)) ##
###Assign initial conditions
u[.5/dy:1/dy+1,.5/dx:1/dx+1]=2 ##set hat function I.C. : u(.5<=x<=1 && .5<=y<=1 ) is 2
fig = pyplot.figure()
ax = fig.gca(projection='3d')
X,Y = numpy.meshgrid(x,y)
surf = ax.plot_surface(X,Y,u, rstride=1, cstride=1, cmap=cm.coolwarm,
linewidth=0, antialiased=False)
ax.set_xlim(0,2)
ax.set_ylim(0,2)
ax.set_zlim(1,2.5);
###Run through nt timesteps
def diffuse(nt):
u[.5/dy:1/dy+1,.5/dx:1/dx+1]=2
for n in range(nt+1):
un = u.copy()
u[1:-1,1:-1]=un[1:-1,1:-1]+nu*dt/dx**2*(un[1:-1,2:]-2*un[1:-1,1:-1]+un[1:-1,0:-2])+\
nu*dt/dy**2*(un[2:,1:-1]-2*un[1:-1,1:-1]+un[0:-2,1:-1])
u[0,:]=1
u[-1,:]=1
u[:,0]=1
u[:,-1]=1
fig = pyplot.figure()
ax = fig.gca(projection='3d')
surf = ax.plot_surface(X,Y,u[:], rstride=1, cstride=1, cmap=cm.coolwarm,
linewidth=0, antialiased=True)
ax.set_zlim(1,2.5)
diffuse(10)
diffuse(14)
diffuse(50)
The video lesson that walks you through the details for Steps 5 to 8 is Video Lesson 6 on You Tube:
from IPython.display import YouTubeVideo
YouTubeVideo('tUg_dE3NXoY')
from IPython.core.display import HTML
def css_styling():
styles = open("../styles/custom.css", "r").read()
return HTML(styles)
css_styling()
(The cell above executes the style for this notebook.)