Now that you are familiar with getting data into Spark, you'll move onto building two types of classification model - Decision Trees and Logistic Regression. You'll also find out about a few approaches to data preparation. This is the Summary of lecture "Machine Learning with PySpark
", via datacamp.
import pyspark
import numpy as np
import pandas as pd
You previously loaded airline flight data from a CSV file. You're going to develop a model which will predict whether or not a given flight will be delayed.
In this exercise you need to trim those data down by:
from pyspark.sql import SparkSession
spark = SparkSession.builder.master('local[*]').appName('flights').getOrCreate()
# Read data from CSV file
flights = spark.read.csv('./dataset/flights-larger.csv', sep=',', header=True, inferSchema=True,
nullValue='NA')
flights.show(5)
+---+---+---+-------+------+---+----+------+--------+-----+ |mon|dom|dow|carrier|flight|org|mile|depart|duration|delay| +---+---+---+-------+------+---+----+------+--------+-----+ | 10| 10| 1| OO| 5836|ORD| 157| 8.18| 51| 27| | 1| 4| 1| OO| 5866|ORD| 466| 15.5| 102| null| | 11| 22| 1| OO| 6016|ORD| 738| 7.17| 127| -19| | 2| 14| 5| B6| 199|JFK|2248| 21.17| 365| 60| | 5| 25| 3| WN| 1675|SJC| 386| 12.92| 85| 22| +---+---+---+-------+------+---+----+------+--------+-----+ only showing top 5 rows
# Remove the 'flight' column
flights_drop_column = flights.drop('flight')
# Number of records with missing 'delay' values
flights_drop_column.filter('delay IS NULL').count()
# Remove records with missing 'delay' values
flights_valid_delay = flights_drop_column.filter('delay IS NOT NULL')
# Remove records with missing values in any column and get the number of remaining rows
flights_none_missing = flights_valid_delay.dropna()
print(flights_none_missing.count())
258289
The Federal Aviation Administration (FAA) considers a flight to be "delayed" when it arrives 15 minutes or more after its scheduled time.
The next step of preparing the flight data has two parts:
mile
column with a kmcolumn
; andfrom pyspark.sql.functions import round
# Convert 'mile' to 'km' and drop 'mile' column
flights_km = flights_none_missing.withColumn('km', round(flights_none_missing.mile * 1.60934, 0)).drop('mile')
# Create 'label' column indicating whether flight delayed (1) or not(0)
flights_km = flights_km.withColumn('label', (flights_km.delay >= 15).cast('integer'))
# Check first five records
flights_km.show(5)
+---+---+---+-------+---+------+--------+-----+------+-----+ |mon|dom|dow|carrier|org|depart|duration|delay| km|label| +---+---+---+-------+---+------+--------+-----+------+-----+ | 10| 10| 1| OO|ORD| 8.18| 51| 27| 253.0| 1| | 11| 22| 1| OO|ORD| 7.17| 127| -19|1188.0| 0| | 2| 14| 5| B6|JFK| 21.17| 365| 60|3618.0| 1| | 5| 25| 3| WN|SJC| 12.92| 85| 22| 621.0| 1| | 3| 28| 1| B6|LGA| 13.33| 182| 70|1732.0| 1| +---+---+---+-------+---+------+--------+-----+------+-----+ only showing top 5 rows
In the flights data there are two columns, carrier
and org
, which hold categorical data. You need to transform those columns into indexed numerical values.
from pyspark.ml.feature import StringIndexer
# Create an indexer
indexer = StringIndexer(inputCol='carrier', outputCol='carrier_idx')
# Indexer identifies categories in the data
indexer_model = indexer.fit(flights_km)
# Indexer creates a new column with numeric index values
flights_indexed = indexer_model.transform(flights_km)
# Repeat the process for the other categorical feature
flights_indexed = StringIndexer(inputCol='org', outputCol='org_idx').fit(flights_indexed).transform(flights_indexed)
The final stage of data preparation is to consolidate all of the predictor columns into a single column.
At present our data has the following predictor columns:
mon
, dom
and dow
carrier_idx
(derived from carrier
)org_idx
(derived from org
)km
depart
duration
from pyspark.ml.feature import VectorAssembler
# Create an assembler object
assembler = VectorAssembler(inputCols=[
'mon', 'dom', 'dow',
'carrier_idx',
'org_idx',
'km', 'depart', 'duration'
], outputCol='features')
# Consolidate predictor columns
flights_assembled = assembler.transform(flights_indexed)
# Check the resulting column
flights_assembled.select('features', 'delay').show(5, truncate=False)
+-----------------------------------------+-----+ |features |delay| +-----------------------------------------+-----+ |[10.0,10.0,1.0,2.0,0.0,253.0,8.18,51.0] |27 | |[11.0,22.0,1.0,2.0,0.0,1188.0,7.17,127.0]|-19 | |[2.0,14.0,5.0,4.0,2.0,3618.0,21.17,365.0]|60 | |[5.0,25.0,3.0,3.0,5.0,621.0,12.92,85.0] |22 | |[3.0,28.0,1.0,4.0,3.0,1732.0,13.33,182.0]|70 | +-----------------------------------------+-----+ only showing top 5 rows
To objectively assess a Machine Learning model you need to be able to test it on an independent set of data. You can't use the same data that you used to train the model: of course the model will perform (relatively) well on those data!
You will split the data into two components:
# Split into training and test sets in a 80:20 ratio
flights_train, flights_test = flights_assembled.randomSplit([0.8, 0.2], seed=17)
# Check that training set has around 80% of records
training_ratio = flights_train.count() / flights_assembled.count()
print(training_ratio)
0.7996856234682855
Now that you've split the flights data into training and testing sets, you can use the training set to fit a Decision Tree model.
from pyspark.ml.classification import DecisionTreeClassifier
# Create a classifier object and fit to the training data
tree = DecisionTreeClassifier()
tree_model = tree.fit(flights_train)
# Create predictions for the testing data and take a look at the predictions
prediction = tree_model.transform(flights_test)
prediction.select('label', 'prediction', 'probability').show(5, False)
+-----+----------+----------------------------------------+ |label|prediction|probability | +-----+----------+----------------------------------------+ |1 |0.0 |[0.6282628262826283,0.37173717371737175]| |1 |0.0 |[0.6282628262826283,0.37173717371737175]| |0 |1.0 |[0.3195001440187889,0.6804998559812111] | |1 |1.0 |[0.3195001440187889,0.6804998559812111] | |0 |1.0 |[0.37094017094017095,0.629059829059829] | +-----+----------+----------------------------------------+ only showing top 5 rows
You can assess the quality of your model by evaluating how well it performs on the testing data. Because the model was not trained on these data, this represents an objective assessment of the model.
A confusion matrix gives a useful breakdown of predictions versus known values. It has four cells which represent the counts of:
# Create a confusion matrix
prediction.groupBy('label', 'prediction').count().show()
# Calculate the elements of the confusion matrix
TN = prediction.filter('prediction = 0 AND label = prediction').count()
TP = prediction.filter('prediction = 1 AND label = prediction').count()
FN = prediction.filter('prediction = 0 AND label = 1').count()
FP = prediction.filter('prediction = 1 AND label = 0').count()
# Accuracy measures the proportion of correct predictions
accuracy = (TN + TP) / (TN + TP + FN + FP)
print(accuracy)
+-----+----------+-----+ |label|prediction|count| +-----+----------+-----+ | 1| 0.0| 9472| | 0| 0.0|16371| | 1| 1.0|16643| | 0| 1.0| 9253| +-----+----------+-----+ 0.6380873229092174
You've already built a Decision Tree model using the flights data. Now you're going to create a Logistic Regression model on the same data.
The objective is to predict whether a flight is likely to be delayed by at least 15 minutes (label 1) or not (label 0).
Although you have a variety of predictors at your disposal, you'll only use the mon
, depart
and duration
columns for the moment. These are numerical features which can immediately be used for a Logistic Regression model. You'll need to do a little more work before you can include categorical features.
from pyspark.ml.classification import LogisticRegression
# Selecting numeric columns
flights_train_num = flights_train.select("mon", 'depart', 'duration', 'features', 'label')
flights_test_num = flights_test.select("mon", "depart", "duration", 'features', 'label')
# Create classifier object and train on training data
logistic = LogisticRegression().fit(flights_train_num)
# Create a predictions for the test data and show confusion matrix
prediction = logistic.transform(flights_test_num)
prediction.groupBy("label", "prediction").count().show()
+-----+----------+-----+ |label|prediction|count| +-----+----------+-----+ | 1| 0.0| 9455| | 0| 0.0|14931| | 1| 1.0|16660| | 0| 1.0|10693| +-----+----------+-----+
Accuracy is generally not a very reliable metric because it can be biased by the most common target class.
There are two other useful metrics:
Precision is the proportion of positive predictions which are correct. For all flights which are predicted to be delayed, what proportion is actually delayed?
Recall is the proportion of positives outcomes which are correctly predicted. For all delayed flights, what proportion is correctly predicted by the model?
The precision and recall are generally formulated in terms of the positive target class. But it's also possible to calculate weighted versions of these metrics which look at both target classes.
# Calculate the elements of the confusion matrix
TN = prediction.filter('prediction = 0 AND label = prediction').count()
TP = prediction.filter('prediction = 1 AND label = prediction').count()
FN = prediction.filter('prediction = 0 AND label = 1').count()
FP = prediction.filter('prediction = 1 AND label = 0').count()
from pyspark.ml.evaluation import MulticlassClassificationEvaluator, BinaryClassificationEvaluator
# Calculate precision and recall
precision = TP / (TP + FP)
recall = TP / (TP + FN)
print('precision = {:.2f}\nrecall = {:.2f}'.format(precision, recall))
# Find weighted precision
multi_evaluator = MulticlassClassificationEvaluator()
weighted_precision = multi_evaluator.evaluate(prediction, {multi_evaluator.metricName: "weightedPrecision"})
# Find AUC
binary_evaluator = BinaryClassificationEvaluator()
auc = binary_evaluator.evaluate(prediction, {binary_evaluator.metricName: "areaUnderROC"})
precision = 0.61 recall = 0.64
print(weighted_precision)
print(auc)
0.6106605467579678 0.6504917093209514
At the end of the previous chapter you loaded a dataset of SMS messages which had been labeled as either "spam" (label 1) or "ham" (label 0). You're now going to use those data to build a classifier model.
But first you'll need to prepare the SMS messages as follows:
In this exercise you'll remove punctuation and numbers, then tokenize the messages.
from pyspark.sql.types import StructType, StructField, IntegerType, StringType
# Specify column names and types
schema = StructType([
StructField("id", IntegerType()),
StructField("text", StringType()),
StructField("label", IntegerType())
])
# Load data from a delimited file
sms = spark.read.csv('./dataset/sms.csv', sep=';', header=False, schema=schema)
from pyspark.sql.functions import regexp_replace
from pyspark.ml.feature import Tokenizer
# Remove punctuation (REGEX provided) and numbers
wrangled = sms.withColumn('text', regexp_replace(sms.text, '[_():;,.!?\\-]', ' '))
wrangled = wrangled.withColumn('text', regexp_replace(wrangled.text, '[0-9]', ' '))
# Merge multiple spaces
wrangled = wrangled.withColumn('text', regexp_replace(wrangled.text, ' +', ' '))
# Split the text into words
wrangled = Tokenizer(inputCol='text', outputCol='words').transform(wrangled)
wrangled.show(4, truncate=False)
+---+----------------------------------+-----+------------------------------------------+ |id |text |label|words | +---+----------------------------------+-----+------------------------------------------+ |1 |Sorry I'll call later in meeting |0 |[sorry, i'll, call, later, in, meeting] | |2 |Dont worry I guess he's busy |0 |[dont, worry, i, guess, he's, busy] | |3 |Call FREEPHONE now |1 |[call, freephone, now] | |4 |Win a cash prize or a prize worth |1 |[win, a, cash, prize, or, a, prize, worth]| +---+----------------------------------+-----+------------------------------------------+ only showing top 4 rows
The next steps will be to remove stop words and then apply the hashing trick, converting the results into a TF-IDF.
A quick reminder about these concepts:
from pyspark.ml.feature import StopWordsRemover, HashingTF, IDF
sms = wrangled.select('id', 'words', 'label')
# Remove stop words.
wrangled = StopWordsRemover(inputCol='words', outputCol='terms').transform(sms)
# Apply the hashing trick
wrangled = HashingTF(inputCol='terms', outputCol='hash', numFeatures=1024).transform(wrangled)
# Convert hashed symbols to TF-IDF
tf_idf = IDF(inputCol='hash', outputCol='features').fit(wrangled).transform(wrangled)
tf_idf.select('terms', 'features').show(4, truncate=False)
+--------------------------------+----------------------------------------------------------------------------------------------------+ |terms |features | +--------------------------------+----------------------------------------------------------------------------------------------------+ |[sorry, call, later, meeting] |(1024,[138,384,577,996],[2.273418200008753,3.6288353225642043,3.5890949939146903,4.104259019279279])| |[dont, worry, guess, busy] |(1024,[215,233,276,329],[3.9913186080986836,3.3790235241678332,4.734227298217693,4.58299632849377]) | |[call, freephone] |(1024,[133,138],[5.367951058306837,2.273418200008753]) | |[win, cash, prize, prize, worth]|(1024,[31,47,62,389],[3.6632029660684124,4.754846585420428,4.072170704727778,7.064594791043114]) | +--------------------------------+----------------------------------------------------------------------------------------------------+ only showing top 4 rows
The SMS data have now been prepared for building a classifier. Specifically, this is what you have done:
Next you'll need to split the TF-IDF data into training and testing sets. Then you'll use the training data to fit a Logistic Regression model and finally evaluate the performance of that model on the testing data.
sms = tf_idf.select('label', 'features')
# Split the data into training and test sets
sms_train, sms_test = sms.randomSplit([0.8, 0.2], seed=13)
# Fit a Logistic Regression model to the training data
logistic = LogisticRegression(regParam=0.2).fit(sms_train)
# Make predictions on the test data
prediction = logistic.transform(sms_test)
# Create a confusion matrix, comparing predictions to known labels
prediction.groupBy('label', 'prediction').count().show()
+-----+----------+-----+ |label|prediction|count| +-----+----------+-----+ | 1| 0.0| 39| | 0| 0.0| 932| | 1| 1.0| 121| | 0| 1.0| 4| +-----+----------+-----+