Name
..
checkpoints
dataset
gym-results
html
image
models
my_icons
training_checkpoints
utils
video
2020-05-21-Software-Engineering-Practices-Pt-1.ipynb
2020-05-22-01-Decorator.ipynb
2020-05-22-02-More-On-Decorators.ipynb
2020-05-23-01-Read-clean-and-validate.ipynb
2020-05-23-02-Distributions.ipynb
2020-05-24-01-Relationships.ipynb
2020-05-24-02-Multivariate-Thinking.ipynb
2020-05-25-01-Preparing-the-data-for-analysis.ipynb
2020-05-25-02-Exploring-the-relationship-between-gender-and-policing.ipynb
2020-05-25-03-Visual-exploratory-data-analysis.ipynb
2020-05-25-04-Software-Engineering-Practices-Pt-2.ipynb
2020-05-26-01-Analyzing-the-effect-of-weather-on-policing.ipynb
2020-05-26-02-Graphical-exploratory-data-analysis.ipynb
2020-05-26-03-Quantitative-exploratory-data-analysis.ipynb
2020-05-26-04-Thinking-probabilistically-Discrete-variables.ipynb
2020-05-26-05-Thinking-probabilistically-Continuous-variables.ipynb
2020-05-27-01-Parameter-estimation-by-optimization.ipynb
2020-05-27-02-Bootstrap-confidence-intervals.ipynb
2020-05-28-01-Introduction-to-hypothesis-testing.ipynb
2020-05-28-02-Putting-it-all-together-a-case-study.ipynb
2020-05-29-01-Dr-Semmelweis-and-the-Discovery-of-Handwashing.ipynb
2020-05-29-02-Classification.ipynb
2020-05-29-03-Regression.ipynb
2020-05-30-01-Fine-tuning-your-model.ipynb
2020-05-31-01-Preprocessing-and-pipelines.ipynb
2020-05-31-02-Predicting-Credit-Card-Approvals.ipynb
2020-05-31-03-Machine-Learning.ipynb
2020-06-01-01-Clustering-for-dataset-exploration.ipynb
2020-06-01-02-Visualization-with-hierarchical-clustering-and-t-SNE.ipynb
2020-06-01-03-Statistical-Fallacies.ipynb
2020-06-02-01-Decorrelating-your-data-and-dimension-reduction.ipynb
2020-06-02-02-Discovering-interpretable-features.ipynb
2020-06-03-01-Decision-tree-for-classification.ipynb
2020-06-03-02-The-Bias-Variance-Tradeoff.ipynb
2020-06-04-01-Bagging-and-Random-Forests.ipynb
2020-06-04-02-Boosting.ipynb
2020-06-04-03-Model-Tuning.ipynb
2020-06-05-01-School-Budgeting-with-Machine-Learning-in-Python.ipynb
2020-06-06-01-Introduction-to-Clustering.ipynb
2020-06-06-02-Hierarchical-Clustering.ipynb
2020-06-06-03-K-Means-Clustering.ipynb
2020-06-06-04-Clustering-in-Real-World.ipynb
2020-06-07-01-Correlation-and-Autocorrelation.ipynb
2020-06-07-02-Some-Simple-Time-Series.ipynb
2020-06-08-01-Autoregressive-Models.ipynb
2020-06-08-02-Moving-Average-and-ARMA-Models.ipynb
2020-06-09-01-TSA-Putting-It-All-Together.ipynb
2020-06-09-02-Working-with-Time-Series-in-Pandas.ipynb
2020-06-10-01-Basic-Time-Series-Metrics-and-Resampling.ipynb
2020-06-11-01-Window-Functions-Rolling-and-Expanding-Metrics.ipynb
2020-06-12-01-Building-a-value-weighted-index.ipynb
2020-06-12-02-Introduction.ipynb
2020-06-12-03-Summary-Statistics-and-Diagnostics.ipynb
2020-06-13-01-Seasonality-Trend-and-Noise.ipynb
2020-06-13-02-Work-with-Multiple-Time-Series.ipynb
2020-06-14-01-Case-Study.ipynb
2020-06-15-01-ARMA-Models.ipynb
2020-06-15-02-Fitting-the-Future.ipynb
2020-06-16-01-The-Best-of-the-Best-Models.ipynb
2020-06-16-02-Seasonal-ARIMA-Models.ipynb
2020-06-17-01-Time-Series-and-Machine-Learning-Primer.ipynb
2020-06-17-02-Time-Series-as-Inputs-to-a-Model.ipynb
2020-06-18-01-Predicting-Time-Series-Data.ipynb
2020-06-18-02-Validating-and-Inspecting-Time-Series-Models.ipynb
2020-06-19-01-Exploring-Linear-Trends.ipynb
2020-06-19-02-Building-Linear-Models.ipynb
2020-06-20-01-Making-Model-Predictions.ipynb
2020-06-21-01-Estimating-Model-Parameters.ipynb
2020-06-21-02-Basics-of-randomness-and-simulation.ipynb
2020-06-21-03-Probability-and-data-generation-process.ipynb
2020-06-22-01-Resampling-methods.ipynb
2020-06-22-02-Advanced-Applications-of-Simulation.ipynb
2020-06-23-01-Fish-sleep-and-bacteria-growth.ipynb
2020-06-23-02-Analysis-of-results-of-the-2015-FINA-World-Swimming-Championships.ipynb
2020-06-24-01-The-Current-Controversy-of-the-2013-World-Championships.ipynb
2020-06-24-02-Statistical-seismology-and-the-Parkfield-region.ipynb
2020-06-24-03-Earthquakes-and-oil-mining-in-Oklahoma.ipynb
2020-06-26-01-Introduction-to-Matplotlib.ipynb
2020-06-26-02-Plotting-time-series.ipynb
2020-06-26-03-Quantitative-comparisons-and-statistical-visualizations.ipynb
2020-06-26-04-Sharing-visualizations-with-others.ipynb
2020-06-26-05-Highlighting-your-data.ipynb
2020-06-26-06-Introduction-to-Seaborn.ipynb
2020-06-26-07-Visualizing-Two-Quantitative-Variables.ipynb
2020-06-26-08-Visualizing-a-Categorical-and-a-Quantitative-Variable.ipynb
2020-06-27-01-Customizing-Seaborn-Plots.ipynb
2020-06-28-01-Using-color-in-your-visualizations.ipynb
2020-06-29-01-Showing-uncertainty.ipynb
2020-06-30-01-Visualization-in-the-data-science-workflow.ipynb
2020-06-30-02-Basic-plotting-with-Bokeh.ipynb
2020-06-30-03-Layouts-Interactions-and-Annotations.ipynb
2020-07-01-01-Building-2-layer-maps-combining-polygons-and-scatterplots.ipynb
2020-07-01-02-Creating-and-joining-GeoDataFrames.ipynb
2020-07-02-01-GeoSeries-and-folium.ipynb
2020-07-03-01-Creating-a-choropleth-building-permit-density-in-Nashville.ipynb
2020-07-05-01-Applying-logistic-regression-and-SVM.ipynb
2020-07-05-02-Loss-functions.ipynb
2020-07-06-01-Logistic-regression.ipynb
2020-07-06-02-Support-Vector-Machines.ipynb
2020-07-06-03-Classification-with-XGBoost.ipynb
2020-07-07-01-Regression-with-XGBoost.ipynb
2020-07-07-02-Fine-tuning-your-XGBoost-model.ipynb
2020-07-07-03-Using-XGBoost-in-pipelines.ipynb
2020-07-08-01-Exploring-high-dimensional-data.ipynb
2020-07-08-02-Feature-selection-I-selecting-for-feature-information.ipynb
2020-07-08-03-Feature-selection-II-selecting-for-model-accuracy.ipynb
2020-07-09-01-Feature-extraction.ipynb
2020-07-09-02-Introduction-to-Data-Preprocessing.ipynb
2020-07-09-03-Standardizing-Data.ipynb
2020-07-09-04-Feature-Engineering.ipynb
2020-07-10-01-Selecting-features-for-modeling.ipynb
2020-07-10-02-Preprocessing-Putting-it-all-together.ipynb
2020-07-12-01-Creating-Features.ipynb
2020-07-12-02-Dealing-with-Messy-Data.ipynb
2020-07-12-03-Conforming-to-Statistical-Assumptions.ipynb
2020-07-12-04-Dealing-with-Text-Data.ipynb
2020-07-13-01-Basic-Modeling-in-scikit-learn.ipynb
2020-07-13-02-Validation-Basics.ipynb
2020-07-14-01-Cross-Validation.ipynb
2020-07-14-02-Selecting-the-best-model-with-Hyperparameter-tuning.ipynb
2020-07-15-01-Regular-expressions-and-word-tokenization.ipynb
2020-07-15-02-Simple-topic-identification.ipynb
2020-07-16-01-Named-entity-recognition.ipynb
2020-07-16-02-Building-a-fake-news-classifier.ipynb
2020-07-17-01-Basic-features-and-readability-scores.ipynb
2020-07-17-02-Text-preprocessing-POS-tagging-and-NER.ipynb
2020-07-17-03-N-Gram-models.ipynb
2020-07-17-04-TF-IDF-and-similarity-scores.ipynb
2020-07-18-01-Introduction-to-TensorFlow.ipynb
2020-07-19-01-Linear-models.ipynb
2020-07-20-01-Neural-Networks.ipynb
2020-07-20-02-High-Level-APIs.ipynb
2020-07-21-01-Basics-of-deep-learning-and-neural-networks.ipynb
2020-07-21-02-Optimizing-a-neural-network-with-backward-propagation.ipynb
2020-07-21-03-Building-deep-learning-models-with-keras.ipynb
2020-07-21-04-Fine-tuning-keras-models.ipynb
2020-07-22-01-Introducing-Keras.ipynb
2020-07-23-01-Going-Deeper.ipynb
2020-07-23-02-Improving-Your-Model-Performance.ipynb
2020-07-26-01-Advanced-Model-Architectures.ipynb
2020-07-27-01-The-Keras-Functional-API.ipynb
2020-07-27-02-Categorical-Embeddings-Shared-Layers-and-Merge-Layers.ipynb
2020-07-28-01-Breast-Cancer-Detection-with-Machine-Learning.ipynb
2020-07-28-02-Multiple-Inputs-in-keras.ipynb
2020-07-28-03-Multiple-Outputs-in-keras.ipynb
2020-07-28-04-Introduction-to-PyTorch.ipynb
2020-07-28-05-Artificial-Neural-Networks-in-PyTorch.ipynb
2020-07-29-01-Convolutional-Neural-Networks-in-PyTorch.ipynb
2020-07-29-02-Using-Convolutional-Neural-Networks-in-PyTorch.ipynb
2020-07-29-03-Board-Game-Review-Predictions.ipynb
2020-07-29-04-Credit-Card-Fraud-Detection.ipynb
2020-07-31-01-Introducing-Image-Processing-and-scikit-image.ipynb
2020-08-02-01-Filters-Contrast-Transformation-and-Morphology.ipynb
2020-08-02-02-Image-restoration-Noise-Segmentation-and-Contours.ipynb
2020-08-02-03-Advanced-Operations-Detecting-Faces-and-Features.ipynb
2020-08-02-04-Stock-Market-Clustering-with-a-KMeans-Algorithm.ipynb
2020-08-03-01-Image-Processing-With-Neural-Networks.ipynb
2020-08-03-02-Using-Convolutions-in-Keras.ipynb
2020-08-04-01-Diabetes-Onset-Detection.ipynb
2020-08-04-02-Going-Deeper-Convolutions-in-Keras.ipynb
2020-08-04-03-Understanding-and-Improving-Deep-Convolutional-Networks-in-Keras.ipynb
2020-08-04-04-DNA-Classification.ipynb
2020-08-05-01-Hyperparameters-and-Parameters.ipynb
2020-08-05-02-Grid-search.ipynb
2020-08-06-01-Random-Search.ipynb
2020-08-06-02-Informed-Search.ipynb
2020-08-06-03-Policy-Gradient-With-Gym-MiniGrid.ipynb
2020-08-07-01-Getting-to-know-PySpark.ipynb
2020-08-09-01-Manipulating-data-in-PySpark.ipynb
2020-08-09-02-Getting-started-with-machine-learning-pipelines-in-PySpark.ipynb
2020-08-10-01-Model-tuning-and-selection-in-PySpark.ipynb
2020-08-10-02-Machine-Learning-with-PySpark-introduction.ipynb
2020-08-10-03-Classification-in-PySpark.ipynb
2020-08-11-01-Regression-in-PySpark.ipynb
2020-08-11-02-Ensembles-and-Pipelines-in-PySpark.ipynb
2020-08-11-03-Object-Recognition-with-ALLCNN.ipynb
2020-08-12-01-Kaggle-competitions-process.ipynb
2020-08-12-02-Dive-into-the-Competition.ipynb
2020-08-12-03-Feature-Engineering.ipynb
2020-08-12-04-Modeling-used-in-Kaggle.ipynb
2020-08-13-01-Exploration-in-Biomedical-Image-Analysis.ipynb
2020-08-13-02-Exploring-the-Bitcoin-Cryptocurrency-Market.ipynb
2020-08-14-01-Naive-Bees-Image-Loading-and-Processing.ipynb
2020-08-15-01-Masks-and-Filters-in-Biomedical-Image-Analysis.ipynb
2020-08-17-01-Exploring-67-years-of-LEGO.ipynb
2020-08-19-01-Comparing-Cosmetics-by-Ingredients.ipynb
2020-08-20-01-Up-and-Down-With-the-Kardashians.ipynb
2020-08-21-01-Tweeting-Trump-or-Trudeau.ipynb
2020-08-22-01-Analyze-Your-Runkeeper-Fitness-Data.ipynb
2020-08-23-01-Disney-Movies-and-Box-Office-Success.ipynb
2020-08-24-01-The-Hottest-Topics-in-Machine-Learning.ipynb
2020-08-26-01-Summary-Statistics-with-Python.ipynb
2020-08-26-02-Random-Numbers-and-Probability.ipynb
2020-08-28-01-More-Distributions-and-the-Central-Limit-Theorem.ipynb
2020-08-28-02-Correlation-and-Experimental-Design.ipynb
2020-08-30-01-Introduction-to-Probability-and-Statistics.ipynb
2020-09-02-01-Sets.ipynb
2020-09-05-01-Simple-Linear-Regression-with-Tensorflow.ipynb
2020-09-07-02-Cost-Minimization-using-Gradient-Descent.ipynb
2020-09-08-01-Multi-variable-Linear-Regression.ipynb
2020-09-09-01-Counting.ipynb
2020-09-09-02-Matplotlib-tutorial.ipynb
2020-09-09-03-Logistic-Regression-Classification.ipynb
2020-09-10-01-Softmax-Regression.ipynb
2020-09-11-01-Application-and-Tips-for-Machine-Learning.ipynb
2020-09-16-01-XOR-Problem-in-Deep-Neural-Network.ipynb
2020-09-18-01-Several-Tips-for-Improving-Neural-Network.ipynb
2020-09-21-01-Image-Classification-with-Fashion-MNIST.ipynb
2020-09-24-01-Training-Hello-world-Model-for-Microcontroller.ipynb
2020-10-07-01-CNN-Basic.ipynb
2020-10-10-01-CNN-with-MNIST.ipynb
2020-10-13-01-Super-Resolution-CNN.ipynb
2020-10-16-01-Image-Classification-with-Cat-and-Dog.ipynb
2020-10-22-01-Introduction-to-Natural-Language-Processing.ipynb
2020-10-23-01-Text-Classification-with-NLTK.ipynb
2020-10-26-01-K-Means-Clustering-for-Imagery-Analysis.ipynb
2020-10-26-02-RNN-Basic.ipynb
2020-12-06-01-RNN-Many-to-one.ipynb
2020-12-08-01-RNN-Many-to-one-stacking.ipynb
2020-12-09-01-RNN-Many-to-many.ipynb
2020-12-10-01-RNN-Many-to-many-bidirectional.ipynb
2020-12-28-01-Exploring-data-on-COVID-19.ipynb
2021-01-06-pytorch-tutorial.ipynb
2021-02-14-music-generation.ipynb
2021-02-27-Debiasing.ipynb
2021-03-06-Pixel-to-Control-Learning.ipynb
2021-03-14-Orthogonal-Projection.ipynb
2021-05-01-GDRL-chapter-2.ipynb
2021-05-01-GDRL-chapter-3.ipynb
2021-05-02-GDRL-chapter-4.ipynb
2021-05-02-GDRL-chapter-5.ipynb
2021-05-07-DQN-LunarLander.ipynb
2021-05-11-CEM-MountainCar.ipynb
2021-05-12-REINFORCE-CartPole.ipynb
2021-05-14-GDRL-chapter-6.ipynb
2021-05-14-GDRL-chapter-7.ipynb
2021-05-20-Linear-Regression-Model.ipynb
2021-05-27-Classification-model.ipynb
2021-06-09-LDA.ipynb
2021-06-11-GDRL-chapter-8.ipynb
2021-06-13-Model-Selection.ipynb
2021-06-16-GDRL-chapter-10.ipynb
2021-06-16-GDRL-chapter-11.ipynb
2021-06-16-GDRL-chapter-9.ipynb
2021-06-16-Likelihood-Estimation.ipynb
2021-06-17-GDRL-chapter-12.ipynb
2021-06-17-Ridge-Lasso-Regression.ipynb
2021-07-28-Various-way-of-stock-analysis.ipynb
2021-07-30-The-Power-of-Image-Augmentation.ipynb
2021-08-11-Multivariate-distribution.ipynb
2021-08-11-Univariate-distribution.ipynb
2021-08-12-Independent-distribution.ipynb
2021-08-13-Broadcasting-rule-in-tfp.ipynb
2021-08-13-Sampling-and-log-probs.ipynb
2021-08-18-Naive-bayes-and-logistic-regression.ipynb
2021-08-18-Trainable-distributions.ipynb
2021-08-19-01-Maximum-likelihood-estimation.ipynb
2021-08-19-02-the-DistributionLambda-layer.ipynb
2021-08-23-01-Probabilistic-layers.ipynb
2021-08-24-01-DenseVariational-layer.ipynb
2021-08-24-02-Reparameterization-layers.ipynb
2021-08-26-01-Bayesian-Convolutional-Neural-Network.ipynb
2021-08-30-01-bijectors.ipynb
2021-09-07-01-the-transformedDistribution-class.ipynb
2021-09-07-02-subclassing-bijectors.ipynb
2021-09-08-01-AutoRegressive-flows-and-RealNVP.ipynb
2021-09-08-02-RealNVP-for-the-LSUN-bedroom-dataset.ipynb
2021-09-13-01-Encoders-and-decoders.ipynb
2021-09-13-02-Minimizing-KL-Divergence.ipynb
2021-09-14-01-Maximizing-the-ELBO.ipynb
2021-09-14-02-KL-divergence-layers.ipynb
2021-09-14-03-Variational-AutoEncoder-Celeb-A.ipynb
2022-02-05-01-Tensorflow2-Functional-API.ipynb
2022-02-08-01-Tensorflow2-Custom-Loss-Function.ipynb
2022-02-08-02-Tensorflow2-Custom-Layers.ipynb
2022-05-11-01-Logistic-Regression-with-a-Neural-Network.ipynb
README.md
checkpoint.pth
covid_data.csv
model.png
tmp.abc
tmp.mid
tmp.wav