import fiona
import geopandas as gpd
import rasterio as rio
from rasterio.plot import show as rioshow
from rasterio import transform
from shapely.geometry import Point
from shapely.geometry import Polygon
from shapely.geometry import MultiPolygon
from shapely.geometry import LineString
from shapely.geometry import box
from shapely import wkt
from pyproj import Transformer
import matplotlib.pyplot as plt
import numpy as np
import os
import requests
from dotenv import load_dotenv
np.set_printoptions(suppress=True)
# Enable KML support which is disabled by default
fiona.drvsupport.supported_drivers['libkml'] = 'rw'
fiona.drvsupport.supported_drivers['LIBKML'] = 'rw'
# Load environmaent variable
load_dotenv()
True
geoCRS = 4326 # for output GeoJSON files (lon/lat)
projCRS = 3857 # for calculations (meters)
OPENTOPO_TOKEN = os.getenv('OPENTOPO_TOKEN')
# Store file path
kreminna_aoi_file = os.path.join('assets','geom','kreminna.kml')
# Read and display the area of interest
kreminna_aoi = gpd.read_file(kreminna_aoi_file).to_crs(projCRS)
print(kreminna_aoi.crs)
kreminna_aoi
EPSG:3857
Name | description | timestamp | begin | end | altitudeMode | tessellate | extrude | visibility | drawOrder | icon | geometry | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | Kreminna | None | NaT | NaT | NaT | None | -1 | 0 | -1 | None | None | POLYGON Z ((4225475.440 6244152.071 0.000, 424... |
kreminna_aoi.iloc[0,-1]
# Remove z coordinate
kreminna_aoi['geometry'] = kreminna_aoi['geometry'].apply(lambda g: wkt.loads(wkt.dumps(g, output_dimension=2)))
kreminna_aoi
Name | description | timestamp | begin | end | altitudeMode | tessellate | extrude | visibility | drawOrder | icon | geometry | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | Kreminna | None | NaT | NaT | NaT | None | -1 | 0 | -1 | None | None | POLYGON ((4225475.440 6244152.071, 4248819.565... |
# Remove unnecessary columns and rename one
kreminna_aoi = kreminna_aoi[['Name','geometry']].rename(columns={'Name':'name'})
# Export area of interest
kreminna_aoi.to_crs(geoCRS).to_file('kreminna-clipped-aoi.geojson', driver='GeoJSON')
# Box coordinates: west, south, east, north
# kreminna_aoi.bounds
# Download Digital Elevation Model for the area (free API token at https://portal.opentopography.org/ is required)
# w, s, e, n = kreminna_aoi.to_crs(geoCRS).bounds.minx, kreminna_aoi.bounds.miny, kreminna_aoi.bounds.maxx, kreminna_aoi.bounds.maxy
# url = "https://portal.opentopography.org/API/globaldem"
# params = {
# 'demtype': 'SRTMGL1',
# 'south': s,
# 'north': n,
# 'west': w,
# 'east': e,
# 'outputFormat': 'GTiff',
# 'API_Key': OPENTOPO_TOKEN
# }
# response = requests.get(url, params=params)
# with open ('kreminna-DEM.tif', 'wb') as f:
# f.write(response.content)
# Store file path
kreminna_dem_file = 'kreminna-DEM.tif'
# Read file contents
with rio.open(kreminna_dem_file) as f:
print(f.meta)
kreminna_dem_array = f.read(1) # number of band (single here anyways)
kreminna_dem_transform = f.transform
kreminna_dem_crs = f.crs
{'driver': 'GTiff', 'dtype': 'int16', 'nodata': -32768.0, 'width': 2321, 'height': 1632, 'count': 1, 'crs': CRS.from_epsg(4326), 'transform': Affine(0.0002777777777778146, 0.0, 37.90958333336221, 0.0, -0.0002777777777778146, 49.21180555555413)}
# Show dem and contours
rioshow(kreminna_dem_array, cmap='plasma', title='DEM'), rioshow(kreminna_dem_array, cmap='plasma', title='DEM Contour', contour=True)
(<Axes: title={'center': 'DEM'}>, <Axes: title={'center': 'DEM Contour'}>)
The contour will be used later for the final visualization.
After importing the downloaded DEM the contours were modified. With the help of "Generalizer" tool, most small objects present on the contour were removed ("Remove small objects" algorithm). After that, the "Boyle's Forward-Looking Algorithm" was used for line smoothing.
Before
After
# Store file path
kreminna_contour_file = os.path.join('assets','elevation','kreminna-elevation-contour.geojson')
# Read and display data
kreminna_contour = gpd.read_file(kreminna_contour_file).to_crs(projCRS).dropna(how='all').reset_index(drop=True)
print(kreminna_contour.crs)
kreminna_contour.plot()
EPSG:3857
<Axes: >
kreminna_contour.head()
fid | ID | ELEV | geometry | |
---|---|---|---|---|
0 | 372 | 371 | 160.0 | LINESTRING (4237994.859 6310877.081, 4238001.1... |
1 | 499 | 498 | 60.0 | LINESTRING (4249528.795 6299548.041, 4249536.3... |
2 | 543 | 542 | 140.0 | LINESTRING (4244024.664 6310877.081, 4244044.8... |
3 | 581 | 580 | 120.0 | LINESTRING (4244622.491 6310877.081, 4244641.5... |
4 | 694 | 693 | 160.0 | LINESTRING (4239479.119 6295058.480, 4239470.9... |
# Remove unnecessary columns and rename one
kreminna_contour = kreminna_contour[['ELEV','geometry']].rename(columns={'ELEV':'elevation'})
# Check contours clip
kreminna_contour.clip(kreminna_aoi).plot()
<Axes: >
# Export clipped contour
kreminna_contour.clip(kreminna_aoi, keep_geom_type=True).to_crs(geoCRS).to_file('kreminna-clipped-contours.geojson', driver='GeoJSON')
Some data cleaning and export as GeoJSON conducted using geojson.io
Before: single file with different geometries
After: 2 separate files, for areas (polygons) and fortifications (lines)
# Store file path
warzone_output = os.path.join('assets','osint','occupied-areas-160624.geojson')
# Read and display data
warzone_areas = gpd.read_file(warzone_output).to_crs(projCRS).dropna(how='all').reset_index(drop=True)
print(warzone_areas.crs)
warzone_areas.plot()
EPSG:3857
<Axes: >
warzone_areas.shape
(12, 2)
warzone_areas
name | geometry | |
---|---|---|
0 | Luhansk Axis | POLYGON Z ((4260951.436 6236366.452 0.000, 425... |
1 | Crimea | POLYGON Z ((3732416.067 5777376.267 0.000, 373... |
2 | Zaporizhia and Kherson Axis [Z] | POLYGON Z ((4081179.821 6062810.207 0.000, 407... |
3 | Donetsk Axis | POLYGON Z ((4189021.991 5957234.538 0.000, 419... |
4 | Russian Luhansk/Kharkiv Offensive | POLYGON Z ((4231127.765 6278584.023 0.000, 423... |
5 | Russian Bakhmut Offensive | POLYGON Z ((4218856.750 6213061.806 0.000, 421... |
6 | Russian N Kharkiv Offensive | POLYGON Z ((4223299.322 6370336.996 0.000, 422... |
7 | Russian Marinka Offensive | POLYGON Z ((4164876.949 6071702.911 0.000, 416... |
8 | Russian Avdiivka Offensive | POLYGON Z ((4200263.645 6136914.705 0.000, 420... |
9 | Russian Velyka Novosilka Offensive | POLYGON Z ((4097783.512 6061066.588 0.000, 409... |
10 | Russian N Kharkiv Offensive | POLYGON Z ((4063155.948 6498287.824 0.000, 406... |
11 | Russian K Kharkiv Offensive 2 | POLYGON Z ((4099378.342 6500626.352 0.000, 409... |
# Remove z coordinate
warzone_areas['geometry'] = warzone_areas['geometry'].apply(lambda g: wkt.loads(wkt.dumps(g, output_dimension=2)))
warzone_areas.head(1)
name | geometry | |
---|---|---|
0 | Luhansk Axis | POLYGON ((4260951.436 6236366.452, 4259578.756... |
# Combine geometries
warzone_areas_d = gpd.geoseries.GeoSeries([geom for geom in warzone_areas.unary_union.geoms])
warzone_areas_d
0 POLYGON ((3985534.326 5700362.291, 3998375.697... 1 POLYGON ((4069614.549 6495154.014, 4069867.155... 2 POLYGON ((4105818.152 6504715.738, 4109319.707... dtype: geometry
# Merge all polygons into a single multipolygon
warzone_area = warzone_areas.dissolve().replace('Luhansk Axis', 'occupied')
warzone_area
geometry | name | |
---|---|---|
0 | MULTIPOLYGON (((3985534.326 5700362.291, 39983... | occupied |
# Display all occupied area
warzone_area.plot()
<Axes: >
# Display occupied area of interest
warzone_area.clip(kreminna_aoi).plot(color='r')
<Axes: >
# Export clipped occupied area
warzone_area.clip(kreminna_aoi, keep_geom_type=True).to_crs(geoCRS).to_file('kreminna-clipped-occupied.geojson', driver='GeoJSON')
# Store file path
warzone_fortif_file= os.path.join('assets','osint','fortification-lines-160624.geojson')
# Read and display data
warzone_fortif = gpd.read_file(warzone_fortif_file).to_crs(projCRS).dropna(how='all').reset_index(drop=True)
print(warzone_fortif.crs)
warzone_fortif.plot()
EPSG:3857
<Axes: >
warzone_fortif.shape
(18, 6)
warzone_fortif
name | styleUrl | stroke-opacity | stroke | stroke-width | geometry | |
---|---|---|---|---|---|---|
0 | Trenches Russia | #line-E65100-2000 | 1 | #e65100 | 2 | GEOMETRYCOLLECTION Z (LINESTRING Z (4194947.10... |
1 | Trenches East | #line-E65100-2000 | 1 | #e65100 | 2 | GEOMETRYCOLLECTION Z (LINESTRING Z (4191602.84... |
2 | Trenches South | #line-E65100-2000 | 1 | #e65100 | 2 | GEOMETRYCOLLECTION Z (LINESTRING Z (3895406.61... |
3 | Dragonteeth East | #line-BDBDBD-2000 | 1 | #bdbdbd | 2 | GEOMETRYCOLLECTION Z (LINESTRING Z (4209115.40... |
4 | Dragonteeth South | #line-BDBDBD-2000 | 1 | #bdbdbd | 2 | GEOMETRYCOLLECTION Z (LINESTRING Z (3911153.53... |
5 | Dragonteeth Russia | #line-BDBDBD-2000 | 1 | #bdbdbd | 2 | GEOMETRYCOLLECTION Z (LINESTRING Z (3538474.69... |
6 | Tankditches East | #line-BCAAA4-2000 | 1 | #bcaaa4 | 2 | GEOMETRYCOLLECTION Z (LINESTRING Z (4221277.05... |
7 | Tankditches South | #line-BCAAA4-2000 | 1 | #bcaaa4 | 2 | GEOMETRYCOLLECTION Z (LINESTRING Z (3902802.45... |
8 | Tankditch Russia | #line-BCAAA4-2000 | 1 | #bcaaa4 | 2 | GEOMETRYCOLLECTION Z (LINESTRING Z (3537983.66... |
9 | Trenches Russia | #line-E65100-2000 | 1 | #e65100 | 2 | GEOMETRYCOLLECTION Z (LINESTRING Z (4194947.10... |
10 | Trenches East | #line-E65100-2000 | 1 | #e65100 | 2 | GEOMETRYCOLLECTION Z (LINESTRING Z (4191602.84... |
11 | Trenches South | #line-E65100-2000 | 1 | #e65100 | 2 | GEOMETRYCOLLECTION Z (LINESTRING Z (3895406.61... |
12 | Dragonteeth East | #line-BDBDBD-2000 | 1 | #bdbdbd | 2 | GEOMETRYCOLLECTION Z (LINESTRING Z (4209115.40... |
13 | Dragonteeth South | #line-BDBDBD-2000 | 1 | #bdbdbd | 2 | GEOMETRYCOLLECTION Z (LINESTRING Z (3911153.53... |
14 | Dragonteeth Russia | #line-BDBDBD-2000 | 1 | #bdbdbd | 2 | GEOMETRYCOLLECTION Z (LINESTRING Z (3538474.69... |
15 | Tankditches East | #line-BCAAA4-2000 | 1 | #bcaaa4 | 2 | GEOMETRYCOLLECTION Z (LINESTRING Z (4221277.05... |
16 | Tankditches South | #line-BCAAA4-2000 | 1 | #bcaaa4 | 2 | GEOMETRYCOLLECTION Z (LINESTRING Z (3902802.45... |
17 | Tankditch Russia | #line-BCAAA4-2000 | 1 | #bcaaa4 | 2 | GEOMETRYCOLLECTION Z (LINESTRING Z (3537983.66... |
# Check geometry types
warzone_fortif.geom_type.value_counts()
GeometryCollection 18 Name: count, dtype: int64
# Remove unnecessary columns
warzone_fortif = warzone_fortif.drop(columns=['stroke','stroke-width','stroke-opacity','styleUrl'])
# Check number of rows in 'unpacked' collections of geometries
warzone_fortif.explode(index_parts=False).shape
(22014, 2)
# Store 'unpacked' geometries
warzone_fortif_decomposed = warzone_fortif.explode(ignore_index=True)
warzone_fortif_decomposed.plot()
<Axes: >
warzone_fortif_decomposed.tail()
name | geometry | |
---|---|---|
22009 | Tankditch Russia | LINESTRING Z (4226752.196 6456716.625 0.000, 4... |
22010 | Tankditch Russia | LINESTRING Z (4226767.781 6450343.677 0.000, 4... |
22011 | Tankditch Russia | LINESTRING Z (4234264.369 6439525.504 0.000, 4... |
22012 | Tankditch Russia | LINESTRING Z (4230234.492 6448436.918 0.000, 4... |
22013 | Tankditch Russia | LINESTRING Z (4234265.371 6439521.870 0.000, 4... |
# Remove z coordianate
warzone_fortif_decomposed['geometry'] = warzone_fortif_decomposed['geometry'].apply(lambda g: wkt.loads(wkt.dumps(g, output_dimension=2)))
warzone_fortif_decomposed.head(1)
name | geometry | |
---|---|---|
0 | Trenches Russia | LINESTRING (4194947.104 6507239.295, 4194669.1... |
# Check fortification types
warzone_fortif_decomposed['name'].value_counts()
name Trenches South 14940 Trenches East 4626 Trenches Russia 936 Dragonteeth East 370 Tankditch Russia 302 Tankditches South 224 Dragonteeth Russia 220 Tankditches East 206 Dragonteeth South 190 Name: count, dtype: int64
# Keep the fortification type name only
warzone_fortif_decomposed['name'] = warzone_fortif_decomposed['name'].apply(lambda x: x.split()[0])
# Remove use of plural and singular forms of same word
warzone_fortif_decomposed['name'] = warzone_fortif_decomposed['name'].replace('Tankditch','Tankditches')
# Plot all available fortifications data
fig, ax = plt.subplots(figsize=(6,8))
warzone_fortif_decomposed.plot(ax=ax, column='name', categorical=True, legend=True, legend_kwds={'loc':'center left', 'frameon':False})
plt.axis('off');
# Plot fortifications data for the area of interest
warzone_fortif_decomposed.clip(kreminna_aoi).plot(column='name', categorical=True, legend=True, legend_kwds={'frameon':False, 'loc':(1,0.5)})
plt.axis('off');
# Create a transformer to convert coordinates from EPSG:3857 to EPSG:4326
transformer = Transformer.from_crs(projCRS, geoCRS)
# Convert the coordinates
x, y = transformer.transform(warzone_fortif_decomposed.centroid.x, warzone_fortif_decomposed.centroid.y)
print('lat:', x[0])
print('lon:', y[0])
lat: 50.350931105034675 lon: 37.681292750770034
# Extract lat and lon into new columns
warzone_fortif_decomposed['lat'] = x
warzone_fortif_decomposed['lon'] = y
warzone_fortif_decomposed.head()
name | geometry | lat | lon | |
---|---|---|---|---|
0 | Trenches | LINESTRING (4194947.104 6507239.295, 4194669.1... | 50.350931 | 37.681293 |
1 | Trenches | LINESTRING (4200849.932 6494320.785, 4200840.3... | 50.274869 | 37.737546 |
2 | Trenches | LINESTRING (4201181.330 6494164.018, 4201156.8... | 50.275419 | 37.738600 |
3 | Trenches | LINESTRING (4200961.919 6493926.436, 4200991.7... | 50.274577 | 37.738953 |
4 | Trenches | LINESTRING (4221884.195 6459532.421, 4221841.1... | 50.076558 | 37.925507 |
# Check wsg84 coordinates
warzone_fortif_decomposed.to_crs(geoCRS).head(1)
name | geometry | lat | lon | |
---|---|---|---|---|
0 | Trenches | LINESTRING (37.68385 50.35073, 37.68135 50.351... | 50.350931 | 37.681293 |
# Export clipped russian positions
warzone_fortif_decomposed.clip(kreminna_aoi, keep_geom_type=True).to_crs(geoCRS).to_file('kreminna-clipped-fortification-lines.geojson', driver='GeoJSON')
Overpass Turbo uses the following format to define a bbox: miny, minx, maxy, maxx
# Display area of interest bbox coordinates for overpass turbo query
kreminna_aoi.to_crs(geoCRS).bounds
minx | miny | maxx | maxy | |
---|---|---|---|---|
0 | 37.909804 | 48.758341 | 38.55444 | 49.211731 |
Therefore, bbox for current area of interest is: (48.758341, 37.909804, 49.211731, 38.55444)
Overpass Turbo:
[out:json][timeout:60];
way["highway"](48.758341,37.909804,49.211731,38.55444);
out geom;
# Store file path
warzone_roads_file= os.path.join('assets','osint','kreminna-roads.geojson')
# Read and display data
warzone_roads = gpd.read_file(warzone_roads_file).to_crs(projCRS).dropna(how='all').reset_index(drop=True)
print(warzone_roads.crs)
warzone_roads.plot()
EPSG:3857
<Axes: >
warzone_roads.columns
Index(['id', '@id', 'access', 'addr:city', 'addr:country', 'addr:postcode', 'alt_name', 'alt_name:en', 'alt_name:ru', 'alt_name:uk', ... 'tracktype', 'trail_visibility', 'trolley_wire', 'tunnel', 'turn:lanes', 'type', 'vehicle', 'wheelchair', 'width', 'geometry'], dtype='object', length=103)
warzone_roads.iloc[0,:].values
array(['way/58858288', 'way/58858288', None, None, None, None, None, None, None, None, 'yes', None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, 'pedestrian', None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, 'Соборна площа', 'Soborna Square', None, 'plac Soborny', 'Соборная площадь', 'Соборна площа', None, None, None, None, None, None, None, None, None, None, None, 'square', None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, <POLYGON ((4287435.623 6265004.411, 4287429.133 6264999.343, 4287417.623 626...>], dtype=object)
warzone_roads['highway'].value_counts(dropna=False)
highway service 6292 track 3949 footway 3433 residential 2887 path 904 unclassified 393 tertiary 382 secondary 240 steps 108 primary 99 pedestrian 53 secondary_link 23 raceway 20 tertiary_link 10 living_street 9 cycleway 9 construction 2 primary_link 2 proposed 1 bridleway 1 Name: count, dtype: int64
warzone_roads['highway'].isna().any()
False
# Rename 'highway' column to a more generalized 'road'
warzone_roads = warzone_roads.rename(columns={'highway':'road'})
# Replace None values in 'road' column with 'road' as their new value
warzone_roads['road'] = warzone_roads['road'].fillna('road')
# Filter needed columns
warzone_roads = warzone_roads.loc[:,['id','road','geometry']]
warzone_roads.head(1)
id | road | geometry | |
---|---|---|---|
0 | way/58858288 | pedestrian | POLYGON ((4287435.623 6265004.411, 4287429.133... |
warzone_roads.isna().any()
id False road False geometry False dtype: bool
# Unpivot a GeoDataFrame
warzone_roads_unpivot = warzone_roads.melt(
id_vars=['id','geometry'],
value_vars='road',
value_name='sub_category',
var_name='category',
ignore_index=True
)
warzone_roads_unpivot.head()
id | geometry | category | sub_category | |
---|---|---|---|---|
0 | way/58858288 | POLYGON ((4287435.623 6265004.411, 4287429.133... | road | pedestrian |
1 | way/102843472 | POLYGON ((4284273.838 6267461.078, 4284236.813... | road | footway |
2 | way/113754362 | POLYGON ((4286856.138 6263917.478, 4286855.704... | road | service |
3 | way/130398660 | POLYGON ((4285698.705 6264378.217, 4285714.568... | road | pedestrian |
4 | way/289920731 | POLYGON ((4277104.117 6260010.439, 4277146.953... | road | footway |
warzone_roads_unpivot.clip(kreminna_aoi).plot()
<Axes: >
# Export clipped roads
warzone_roads_unpivot.clip(kreminna_aoi).to_crs(geoCRS).to_file('kreminna-clipped-roads.geojson', driver='GeoJSON')
Overpass Turbo:
[out:json][timeout:60];
node["place"]["place"!~"square"](48.758341,37.909804,49.211731,38.55444);
out geom;
# Store file path
warzone_places_file = os.path.join('assets','osint','kreminna-places.geojson')
# Read and display data
warzone_places = gpd.read_file(warzone_places_file).to_crs(projCRS).dropna(how='all').reset_index(drop=True)
print(warzone_places.crs)
warzone_places.plot()
EPSG:3857
<Axes: >
warzone_places.columns
Index(['id', '@id', 'alt_name:cs', 'alt_name:en', 'alt_name:fr', 'alt_name:hr', 'alt_name:ko', 'attribution', 'contact:website', 'ele', 'katotth', 'koatuu', 'name', 'name:ar', 'name:ast', 'name:az', 'name:azb', 'name:ba', 'name:be', 'name:bg', 'name:ca', 'name:ce', 'name:ceb', 'name:crh', 'name:crh-cyr', 'name:cs', 'name:da', 'name:de', 'name:el', 'name:en', 'name:eo', 'name:es', 'name:et', 'name:eu', 'name:fa', 'name:fi', 'name:fr', 'name:he', 'name:hr', 'name:hsb', 'name:hu', 'name:hy', 'name:it', 'name:ja', 'name:ka', 'name:ko', 'name:ky', 'name:lt', 'name:lv', 'name:mhr', 'name:ml', 'name:mr', 'name:nl', 'name:nn', 'name:no', 'name:os', 'name:pl', 'name:prefix', 'name:pt', 'name:ro', 'name:ru', 'name:rue', 'name:sco', 'name:sr', 'name:sv', 'name:th', 'name:tr', 'name:tt', 'name:udm', 'name:uk', 'name:uz', 'name:vep', 'name:vi', 'name:war', 'name:zh', 'note', 'old_name', 'old_name:be', 'old_name:cs', 'old_name:de', 'old_name:en', 'old_name:ko', 'old_name:uk', 'old_name:zh', 'old_name:zh-cn', 'old_name:zh-hk', 'old_name:zh-mo', 'old_name:zh-sg', 'old_name:zh-tw', 'place', 'population', 'postal_code', 'start_date', 'website', 'wikidata', 'wikipedia', 'wikipedia:ru', 'geometry'], dtype='object')
warzone_places.iloc[0,:].values
array(['node/256614599', 'node/256614599', None, None, None, None, None, 'travelgps.com.ua', None, None, 'UA14020090340091913', '1420980505', 'Виїмка', None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, 'Vyimka', None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, '비임카', None, None, None, None, None, None, None, None, None, None, None, 'селище', None, None, 'Выемка', None, None, None, None, None, None, None, None, 'Виїмка', None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, 'village', '21', '84541', None, None, 'Q4128913', 'uk:Виїмка (селище)', None, <POINT (4246573.633 6241774.286)>], dtype=object)
warzone_places['name'].isna().value_counts()
name False 80 Name: count, dtype: int64
warzone_places['name:en'].isna().value_counts()
name:en False 76 True 4 Name: count, dtype: int64
# Filter needed columns
warzone_places_filtered = warzone_places.loc[:,['id','name:en','name','place','geometry']]
warzone_places_filtered.head(1)
id | name:en | name | place | geometry | |
---|---|---|---|---|---|
0 | node/256614599 | Vyimka | Виїмка | village | POINT (4246573.633 6241774.286) |
# Check which english place translations are missing
warzone_places_filtered[warzone_places_filtered['name:en'].isna()]
id | name:en | name | place | geometry | |
---|---|---|---|---|---|
38 | node/337570393 | None | Ведмеже | locality | POINT (4239929.830 6298727.955) |
77 | node/5802076961 | None | Матроська | suburb | POINT (4280607.942 6250031.275) |
78 | node/6549483101 | None | Південна | suburb | POINT (4275293.183 6272466.136) |
79 | node/6835867411 | None | Чихирове | suburb | POINT (4289755.900 6239075.091) |
# Fill missing place names
warzone_places_filtered.loc[38,'name:en'] = 'Vedmezhe'
warzone_places_filtered.loc[77,'name:en'] = 'Matroska'
warzone_places_filtered.loc[78,'name:en'] = 'Pivdenna'
warzone_places_filtered.loc[79,'name:en'] = 'Chykhyrove'
warzone_places_filtered[warzone_places_filtered['name:en'].isna()]
id | name:en | name | place | geometry |
---|
warzone_places_filtered['place'].value_counts(dropna=False)
place village 50 town 12 hamlet 10 suburb 4 locality 2 city 2 Name: count, dtype: int64
# Replace None values in 'place' column with 'place' as their new value
warzone_places_filtered['place'] = warzone_places_filtered['place'].fillna('place')
# Create a transformer to convert coordinates from EPSG:3857 to EPSG:4326
transformer = Transformer.from_crs(projCRS, geoCRS)
# Convert the coordinates
x, y = transformer.transform(warzone_places_filtered.centroid.x, warzone_places_filtered.centroid.y)
# Extract lat and lon into new columns
warzone_places_filtered['lat'] = x
warzone_places_filtered['lon'] = y
warzone_places_filtered.isna().any()
id False name:en False name False place False geometry False lat False lon False dtype: bool
# Unpivot GeoDataFrame
warzone_places_unpivot = warzone_places_filtered.melt(
id_vars=['id','name:en','name','lon','lat','geometry'],
value_vars='place',
value_name='sub_category',
var_name='category',
ignore_index=True
)
warzone_places_unpivot.sample(10)
id | name:en | name | lon | lat | geometry | category | sub_category | |
---|---|---|---|---|---|---|---|---|
28 | node/337567352 | Ploshchanka | Площанка | 38.083210 | 49.208809 | POINT (4239403.545 6310366.469) | place | village |
38 | node/337570393 | Vedmezhe | Ведмеже | 38.087938 | 49.140459 | POINT (4239929.830 6298727.955) | place | locality |
15 | node/256614803 | Hryhorivka | Григорівка | 38.186420 | 48.924520 | POINT (4250892.830 6262063.708) | place | village |
50 | node/337576644 | Rubizhne | Рубіжне | 38.372582 | 49.032905 | POINT (4271616.278 6280446.445) | place | town |
64 | node/337582086 | Lysychansk | Лисичанськ | 38.428598 | 48.917267 | POINT (4277851.972 6260834.976) | place | city |
47 | node/337574994 | Stara Krasnianka | Стара Краснянка | 38.288593 | 49.037716 | POINT (4262266.676 6281263.435) | place | village |
17 | node/256615981 | Terny | Терни | 37.962570 | 49.097210 | POINT (4225973.962 6291372.023) | place | village |
22 | node/256616082 | Yampil | Ямпіль | 37.960105 | 48.940078 | POINT (4225699.570 6264700.062) | place | town |
7 | node/256614688 | Kuzmynivka | Кузьминівка | 38.069776 | 48.794228 | POINT (4237908.090 6240018.026) | place | hamlet |
3 | node/256614609 | Spirne | Спірне | 38.247360 | 48.809420 | POINT (4257676.639 6242585.607) | place | village |
warzone_places_unpivot.clip(kreminna_aoi).plot()
<Axes: >
# Export clipped places
warzone_places_unpivot.clip(kreminna_aoi).to_crs(geoCRS).to_file('kreminna-clipped-places.geojson', driver='GeoJSON')
[out:json][timeout:60];
nwr["building"](48.758341,37.909804,49.211731,38.55444);
out geom;
# Store file path
warzone_buildings_file = os.path.join('assets','osint','kreminna-buildings.geojson')
# Read and display data
warzone_buildings = gpd.read_file(warzone_buildings_file).to_crs(projCRS).dropna(how='all').reset_index(drop=True)
print(warzone_buildings.crs)
warzone_buildings.plot()
EPSG:3857
<Axes: >
# Check geometry types
warzone_buildings.geom_type.value_counts(dropna=False)
Polygon 64314 Point 88 LineString 3 MultiPolygon 2 Name: count, dtype: int64
# Store point geometries instead of polygons
warzone_buildings['geometry'] = warzone_buildings.centroid
warzone_buildings.geom_type.value_counts(dropna=False)
Point 64407 Name: count, dtype: int64
warzone_buildings.columns
Index(['id', '@id', 'abandoned', 'abandoned:building', 'access', 'addr:city', 'addr:country', 'addr:housenumber', 'addr:postcode', 'addr:street', ... 'tower:type', 'townhall:type', 'train', 'type', 'voltage', 'website', 'wheelchair', 'wikidata', 'wikipedia', 'geometry'], dtype='object', length=141)
warzone_buildings.iloc[0,:].values
array(['relation/1595718', 'relation/1595718', None, None, None, None, None, '115а', None, 'Гагаріна вулиця', None, None, None, None, None, None, None, None, None, 'kindergarten', None, None, None, '2', None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, 'tar_paper', None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, 'multipolygon', None, None, None, None, None, <POINT (4289358.826 6265648.11)>], dtype=object)
warzone_buildings.isna().any()
id False @id False abandoned True abandoned:building True access True ... website True wheelchair True wikidata True wikipedia True geometry False Length: 141, dtype: bool
# Filter needed columns
warzone_buildings_filtered = warzone_buildings.loc[:,['id','geometry']]
warzone_buildings_filtered.head(1)
id | geometry | |
---|---|---|
0 | relation/1595718 | POINT (4289358.826 6265648.110) |
# Create a transformer to convert coordinates from EPSG:3857 to EPSG:4326
transformer = Transformer.from_crs(projCRS, geoCRS)
# Convert the coordinates
x, y = transformer.transform(warzone_buildings_filtered.centroid.x, warzone_buildings_filtered.centroid.y)
# Extract lat and lon into new columns
warzone_buildings_filtered['lat'] = x
warzone_buildings_filtered['lon'] = y
warzone_buildings_filtered.isna().any()
id False geometry False lat False lon False dtype: bool
warzone_buildings_filtered.clip(kreminna_aoi).plot()
<Axes: >
# Export clipped ponds
warzone_buildings_filtered.clip(kreminna_aoi).to_crs(geoCRS).to_file('kreminna-clipped-buildings.geojson', driver='GeoJSON')
Overpass Turbo:
[out:json][timeout:60];
area["natural"="water"]["water"!~"river"](48.758341,37.909804,49.211731,38.55444);
out geom;
# Store file path
warzone_ponds_file = os.path.join('assets','osint','kreminna-ponds.geojson')
# Read and display data
warzone_ponds = gpd.read_file(warzone_ponds_file).to_crs(projCRS).dropna(how='all').reset_index(drop=True)
print(warzone_ponds.crs)
warzone_ponds.plot()
EPSG:3857
<Axes: >
warzone_ponds.columns
Index(['id', '@id', 'alt_name', 'amenity', 'description:ru', 'drained', 'drinking_water', 'intermittent', 'landuse', 'layer', 'liquid_waste', 'loc_name:ru', 'man_made', 'military', 'name', 'name:en', 'name:ru', 'name:uk', 'natural', 'reservoir_type', 'salt', 'waste_kind', 'water', 'geometry'], dtype='object')
warzone_ponds.iloc[0,:].values
array(['way/31015582', 'way/31015582', None, None, None, None, None, None, None, None, None, None, None, None, 'Чисте озеро', 'Chyste Lake', 'Чистое озеро', 'Чисте озеро', 'water', None, None, None, 'lake', <POLYGON ((4287317.035 6263538.524, 4287291.887 6263523.595, 4287271.327 626...>], dtype=object)
warzone_ponds.isna().any()
id False @id False alt_name True amenity True description:ru True drained True drinking_water True intermittent True landuse True layer True liquid_waste True loc_name:ru True man_made True military True name True name:en True name:ru True name:uk True natural False reservoir_type True salt True waste_kind True water True geometry False dtype: bool
warzone_ponds['water'].value_counts(dropna=False)
water None 463 reservoir 171 pond 93 lake 37 wastewater 16 basin 11 Name: count, dtype: int64
# Replace None values in 'water' column with 'water' as their new value
warzone_ponds['water'] = warzone_ponds['water'].fillna('water')
# Filter needed columns
warzone_ponds = warzone_ponds.loc[:,['id', '@id','water','geometry']]
warzone_ponds.head(1)
id | @id | water | geometry | |
---|---|---|---|---|
0 | way/31015582 | way/31015582 | lake | POLYGON ((4287317.035 6263538.524, 4287291.887... |
warzone_ponds.isna().any()
id False @id False water False geometry False dtype: bool
# Unpivot GeoDataFrame
warzone_ponds_unpivot = warzone_ponds.melt(
id_vars=['id','geometry'],
value_vars='water',
value_name='sub_category',
var_name='category',
ignore_index=True
)
warzone_ponds_unpivot.sample(10)
id | geometry | category | sub_category | |
---|---|---|---|---|
479 | way/387036959 | POLYGON ((4274956.118 6253717.009, 4274942.715... | water | reservoir |
198 | way/318493865 | POLYGON ((4274502.291 6279345.318, 4274490.948... | water | water |
334 | way/329270836 | POLYGON ((4236235.003 6266566.885, 4236239.867... | water | lake |
191 | way/317690580 | POLYGON ((4274136.874 6276183.518, 4274139.111... | water | water |
298 | way/321739783 | POLYGON ((4251580.283 6293726.699, 4251588.075... | water | water |
372 | way/344399764 | POLYGON ((4267432.591 6248510.433, 4267417.284... | water | water |
160 | way/315996023 | POLYGON ((4273927.281 6250693.343, 4273933.226... | water | reservoir |
471 | way/387036935 | POLYGON ((4275047.957 6253931.323, 4275034.565... | water | reservoir |
340 | way/330557639 | POLYGON ((4233875.898 6295650.247, 4233828.353... | water | water |
677 | way/710713918 | POLYGON ((4274648.509 6255156.378, 4274644.613... | water | pond |
warzone_ponds_unpivot.clip(kreminna_aoi).plot()
<Axes: >
# Export clipped ponds
warzone_ponds_unpivot.clip(kreminna_aoi).to_crs(geoCRS).to_file('kreminna-clipped-ponds.geojson', driver='GeoJSON')
Overpass Turbo:
[out:json][timeout:60];
area["natural"="wetland"](48.758341,37.909804,49.211731,38.55444);
out geom;
# Store file path
warzone_wetlands_file = os.path.join('assets','osint','kreminna-swamps.geojson')
# Read and display data
warzone_wetlands = gpd.read_file(warzone_wetlands_file).to_crs(projCRS).dropna(how='all').reset_index(drop=True)
print(warzone_wetlands.crs)
warzone_wetlands.plot()
EPSG:3857
<Axes: >
warzone_wetlands.columns
Index(['id', '@id', 'area', 'leaf_cycle', 'leaf_type', 'natural', 'wetland', 'geometry'], dtype='object')
warzone_wetlands.iloc[0,:].values
array(['way/35639520', 'way/35639520', None, None, None, 'wetland', 'marsh', <POLYGON ((4291149.063 6265518.413, 4291182.504 6265418.091, 4291244.609 626...>], dtype=object)
warzone_wetlands.isna().any()
id False @id False area True leaf_cycle True leaf_type True natural False wetland True geometry False dtype: bool
warzone_wetlands.loc[:,'wetland'].value_counts(dropna=False)
wetland swamp 360 reedbed 227 None 191 marsh 69 wet_meadow 18 fen 10 bog 2 Name: count, dtype: int64
# Replace None values in 'wetland' column with 'wetland' as their new value
warzone_wetlands['wetland'] = warzone_wetlands['wetland'].fillna('wetland')
# Filter needed columns
warzone_wetlands = warzone_wetlands.loc[:,['id', '@id','wetland','geometry']]
warzone_wetlands.head(1)
id | @id | wetland | geometry | |
---|---|---|---|---|
0 | way/35639520 | way/35639520 | marsh | POLYGON ((4291149.063 6265518.413, 4291182.504... |
warzone_wetlands.isna().any()
id False @id False wetland False geometry False dtype: bool
# Unpivot GeoDataFrame
warzone_wetlands_unpivot = warzone_wetlands.melt(
id_vars=['id', '@id','geometry'],
value_vars='wetland',
value_name='sub_category',
var_name='category',
ignore_index=True
)
warzone_wetlands_unpivot.head(10)
id | @id | geometry | category | sub_category | |
---|---|---|---|---|---|
0 | way/35639520 | way/35639520 | POLYGON ((4291149.063 6265518.413, 4291182.504... | wetland | marsh |
1 | way/112684020 | way/112684020 | POLYGON ((4269915.383 6267402.336, 4269920.069... | wetland | marsh |
2 | way/112927487 | way/112927487 | POLYGON ((4274699.471 6265212.536, 4274709.757... | wetland | reedbed |
3 | way/182211395 | way/182211395 | POLYGON ((4222634.577 6258290.850, 4222596.417... | wetland | wetland |
4 | way/182401547 | way/182401547 | POLYGON ((4231936.067 6260307.302, 4231973.648... | wetland | wetland |
5 | way/220263530 | way/220263530 | POLYGON ((4285077.899 6260555.796, 4285084.533... | wetland | marsh |
6 | way/220263533 | way/220263533 | POLYGON ((4283792.749 6260971.309, 4283800.819... | wetland | marsh |
7 | way/220263534 | way/220263534 | POLYGON ((4283147.541 6260282.266, 4283200.651... | wetland | marsh |
8 | way/220263535 | way/220263535 | POLYGON ((4285236.473 6260521.850, 4285229.505... | wetland | marsh |
9 | way/220263536 | way/220263536 | POLYGON ((4284572.709 6261145.963, 4284581.147... | wetland | marsh |
warzone_wetlands_unpivot.clip(kreminna_aoi).plot()
<Axes: >
# Export clipped wetlands
warzone_wetlands_unpivot.clip(kreminna_aoi).to_crs(geoCRS).to_file('kreminna-clipped-wetlands.geojson', driver='GeoJSON')
Overpass Turbo:
[out:json][timeout:60];
way["waterway"](48.758341,37.909804,49.211731,38.55444);
out geom;
# Store file path
warzone_rivers_file = os.path.join('assets','osint','kreminna-rivers.geojson')
# Read and display data
warzone_rivers = gpd.read_file(warzone_rivers_file).to_crs(projCRS).dropna(how='all').reset_index(drop=True)
print(warzone_rivers.crs)
warzone_rivers.plot()
EPSG:3857
<Axes: >
warzone_rivers.columns
Index(['id', '@id', 'alt_name:cs', 'boat', 'est_width', 'int_name', 'intermittent', 'layer', 'loc_name', 'lock', 'material', 'name', 'name:be', 'name:bg', 'name:cs', 'name:de', 'name:el', 'name:en', 'name:he', 'name:hu', 'name:hy', 'name:ka', 'name:pl', 'name:ro', 'name:ru', 'name:uk', 'name:zh', 'old_name', 'source', 'tunnel', 'waterway', 'width', 'wikidata', 'wikipedia', 'geometry'], dtype='object')
warzone_rivers.iloc[0,:].values
array(['way/1058339134', 'way/1058339134', None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, 'dam', None, None, None, <POLYGON ((4238509.204 6261634.843, 4238492.339 6261634.115, 4238496.536 626...>], dtype=object)
warzone_rivers.isna().any()
id False @id False alt_name:cs True boat True est_width True int_name True intermittent True layer True loc_name True lock True material True name True name:be True name:bg True name:cs True name:de True name:el True name:en True name:he True name:hu True name:hy True name:ka True name:pl True name:ro True name:ru True name:uk True name:zh True old_name True source True tunnel True waterway False width True wikidata True wikipedia True geometry False dtype: bool
warzone_rivers.loc[:,'waterway'].value_counts(dropna=False)
waterway stream 287 drain 123 weir 87 river 21 canal 10 dam 5 Name: count, dtype: int64
warzone_rivers.loc[:,'width'].value_counts(dropna=False)
width None 530 1 2 2 1 Name: count, dtype: int64
# Replace None values in 'waterway' column with 'waterway' as their new value
warzone_rivers['waterway'] = warzone_rivers['waterway'].fillna('waterway')
# Filter needed columns
warzone_rivers = warzone_rivers.loc[:,['id', '@id','waterway','geometry']]
warzone_rivers.head(1)
id | @id | waterway | geometry | |
---|---|---|---|---|
0 | way/1058339134 | way/1058339134 | dam | POLYGON ((4238509.204 6261634.843, 4238492.339... |
# Unpivot GeoDataFrame
warzone_rivers_unpivot = warzone_rivers.melt(
id_vars=['id', '@id','geometry'],
value_vars='waterway',
value_name='sub_category',
var_name='category',
ignore_index=True
)
warzone_rivers_unpivot.sample(10)
id | @id | geometry | category | sub_category | |
---|---|---|---|---|---|
527 | way/1144676512 | way/1144676512 | LINESTRING (4239429.738 6255278.992, 4239446.4... | waterway | stream |
6 | way/140095562 | way/140095562 | LINESTRING (4252444.968 6280740.885, 4252491.5... | waterway | stream |
220 | way/575150694 | way/575150694 | LINESTRING (4275404.179 6249812.830, 4275400.0... | waterway | stream |
436 | way/904450779 | way/904450779 | LINESTRING (4267188.200 6298934.140, 4267190.5... | waterway | weir |
307 | way/710713928 | way/710713928 | LINESTRING (4274385.339 6254907.991, 4274421.2... | waterway | drain |
161 | way/483306007 | way/483306007 | LINESTRING (4247570.878 6296010.419, 4247600.8... | waterway | stream |
293 | way/687819864 | way/687819864 | LINESTRING (4266875.025 6267801.689, 4266854.2... | waterway | weir |
76 | way/376848672 | way/376848672 | LINESTRING (4223986.419 6281944.731, 4223963.7... | waterway | drain |
136 | way/461850186 | way/461850186 | LINESTRING (4287442.692 6260662.853, 4287491.3... | waterway | drain |
349 | way/771334119 | way/771334119 | LINESTRING (4254158.042 6251397.427, 4254131.4... | waterway | stream |
warzone_rivers_unpivot.clip(kreminna_aoi).plot()
<Axes: >
# Export clipped rivers
warzone_rivers_unpivot.clip(kreminna_aoi).to_crs(geoCRS).to_file('kreminna-clipped-rivers.geojson', driver='GeoJSON')