Name
..
images
mcpi benchmark
pset3
runge-kutta benchmark
sumofsinc
1 + 2 sum of sin(k) over k.ipynb
BM and WMW.ipynb
CartesianIndex.ipynb
Distributions.jl and StatsPlots.jl.ipynb
E₁(z).ipynb
How to draw diagrams with potential outcome variables.ipynb
LoopVectorization.jl example.ipynb
MyNormal.ipynb
Nemo.jl F4 embedded in F64.ipynb
Override SymPy Base,show latex.ipynb
P-value function of Z-test.ipynb
TaskLocalXorshift64.ipynb
Turing version of Welch t-test.ipynb
Xorshift64 and TaskLocalXorshift64.ipynb
Z-score normalization.ipynb
abc133_b.ipynb
broadcast and sum(f, X).ipynb
btime sin(rand()).ipynb
chisq vs fisher.ipynb
chisq2x2riskratio.ipynb
erfinv_Float32.ipynb
generalized central limit theorem.ipynb
inline vs noinline.ipynb
mcpi_LCG.ipynb
mergewith.ipynb
normal approximation of binomial distributions.ipynb
ok numbers.ipynb
one sample nonparametric test.ipynb
override SymPy Base.show.ipynb
parser of Julia.ipynb
runge-kutra benchmark.ipynb
simplest example of @fastmath.ipynb
統計力学におけるカノニカル分布の最も簡単な場合.ipynb
1 + 2 sum of sin(k) over k.jl
CartesianIndex.jl
Dist(sqrt, 0.51, 1.02).gif
Dist(sqrt, 1.31, 3.48).gif
Dist(sqrt, 17.48, 49.36).gif
Dist(sqrt, 3.24, 9.04).gif
Dist(sqrt, 8.62, 24.29).gif
E₁(z).jl
Gamma(1.00, 2.00).gif
Gamma(25.00, 0.08).gif
Gamma(5.00, 0.40).gif
How to draw diagrams with potential outcome variables.jl
How to draw diagrams with potential outcome variables.pdf
LoopVectorization.jl example.jl
MyNormal.jl
Nemo.jl F4 embedded in F64.jl
Override SymPy Base,show latex.jl
P-value function of Z-test.jl
TaskLocalXorshift64.jl
Turing version of Welch t-test.jl
Z-score normalization.jl
abc133_b.jl
broadcast and sum(f, X).jl
chisq vs fisher.jl
chisq2x2riskratio.jl
deleted_cuda_path.txt
exp1.gif
exp2.gif
foo.jl
generalized central limit theorem.jl
inline vs noinline.jl
mcpi_LCG.jl
mergewith.jl
normal approximation of binomial distributions.jl
normal2.gif
ok numbers.jl
one sample nonparametric test.jl
parser of Julia.jl
problem.txt
result_julia.out
runge-kutra benchmark.jl
simplest example of @fastmath.jl
統計力学におけるカノニカル分布の最も簡単な場合.jl