..
|
images
|
mcpi benchmark
|
pset3
|
runge-kutta benchmark
|
sumofsinc
|
1 + 2 sum of sin(k) over k.ipynb
|
BM and WMW.ipynb
|
CartesianIndex.ipynb
|
Distributions.jl and StatsPlots.jl.ipynb
|
E₁(z).ipynb
|
How to draw diagrams with potential outcome variables.ipynb
|
LoopVectorization.jl example.ipynb
|
MyNormal.ipynb
|
Nemo.jl F4 embedded in F64.ipynb
|
Override SymPy Base,show latex.ipynb
|
P-value function of Z-test.ipynb
|
TaskLocalXorshift64.ipynb
|
Turing version of Welch t-test.ipynb
|
Xorshift64 and TaskLocalXorshift64.ipynb
|
Z-score normalization.ipynb
|
abc133_b.ipynb
|
broadcast and sum(f, X).ipynb
|
btime sin(rand()).ipynb
|
chisq vs fisher.ipynb
|
chisq2x2riskratio.ipynb
|
erfinv_Float32.ipynb
|
generalized central limit theorem.ipynb
|
inline vs noinline.ipynb
|
mcpi_LCG.ipynb
|
mergewith.ipynb
|
normal approximation of binomial distributions.ipynb
|
ok numbers.ipynb
|
one sample nonparametric test.ipynb
|
override SymPy Base.show.ipynb
|
parser of Julia.ipynb
|
runge-kutra benchmark.ipynb
|
simplest example of @fastmath.ipynb
|
統計力学におけるカノニカル分布の最も簡単な場合.ipynb
|
1 + 2 sum of sin(k) over k.jl
|
CartesianIndex.jl
|
Dist(sqrt, 0.51, 1.02).gif
|
Dist(sqrt, 1.31, 3.48).gif
|
Dist(sqrt, 17.48, 49.36).gif
|
Dist(sqrt, 3.24, 9.04).gif
|
Dist(sqrt, 8.62, 24.29).gif
|
E₁(z).jl
|
Gamma(1.00, 2.00).gif
|
Gamma(25.00, 0.08).gif
|
Gamma(5.00, 0.40).gif
|
How to draw diagrams with potential outcome variables.jl
|
How to draw diagrams with potential outcome variables.pdf
|
LoopVectorization.jl example.jl
|
MyNormal.jl
|
Nemo.jl F4 embedded in F64.jl
|
Override SymPy Base,show latex.jl
|
P-value function of Z-test.jl
|
TaskLocalXorshift64.jl
|
Turing version of Welch t-test.jl
|
Z-score normalization.jl
|
abc133_b.jl
|
broadcast and sum(f, X).jl
|
chisq vs fisher.jl
|
chisq2x2riskratio.jl
|
deleted_cuda_path.txt
|
exp1.gif
|
exp2.gif
|
foo.jl
|
generalized central limit theorem.jl
|
inline vs noinline.jl
|
mcpi_LCG.jl
|
mergewith.jl
|
normal approximation of binomial distributions.jl
|
normal2.gif
|
ok numbers.jl
|
one sample nonparametric test.jl
|
parser of Julia.jl
|
problem.txt
|
result_julia.out
|
runge-kutra benchmark.jl
|
simplest example of @fastmath.jl
|
統計力学におけるカノニカル分布の最も簡単な場合.jl
|