..
|
data
|
bayesian_linear_regression.py
|
bayesian_linear_regression_10d.py
|
bayesian_linear_regression_ppc.py
|
bayesian_linear_regression_tensor.py
|
bayesian_nn.py
|
beta_bernoulli.py
|
beta_bernoulli_map.py
|
beta_bernoulli_mh.py
|
beta_bernoulli_ppc.py
|
factor_analysis.py
|
getting_started_example.py
|
gp_classification.py
|
latent_space_model.py
|
mixture_gaussian_mh.py
|
normal_hmc.py
|
normal_idiomatic_tf.py
|
normal_normal.py
|
normal_normal_mh.py
|
normal_normal_tensorboard.py
|
normal_sgld.py
|
np_beta_bernoulli.py
|
pp_dirichlet_process.py
|
pp_persistent_randomness.py
|
pp_stochastic_control_flow.py
|
pp_stochastic_recursion.py
|
probabilistic_pca.py
|
probabilistic_pca_subsampling.py
|
pymc3_beta_bernoulli.py
|
stan_beta_bernoulli.py
|
tf_bayesian_linear_regression.py
|
tf_bayesian_linear_regression_plot.py
|
tf_bayesian_nn.py
|
tf_bayesian_nn_analytic_kl.py
|
tf_bayesian_nn_separate_weights.py
|
tf_bernoulli.py
|
tf_beta_bernoulli.py
|
tf_beta_bernoulli_map.py
|
tf_beta_bernoulli_ppc.py
|
tf_beta_bernoulli_prior_predictive_check.py
|
tf_convolutional_vae.py
|
tf_convolutional_vae_util.py
|
tf_gp_classification.py
|
tf_hierarchical_logistic_regression.py
|
tf_iwvi.py
|
tf_latent_space_model.py
|
tf_matrix_factorization.py
|
tf_mixture_density_network.py
|
tf_mixture_density_network_demo.py
|
tf_mixture_density_network_slim.py
|
tf_mixture_gaussian.py
|
tf_mixture_gaussian_laplace.py
|
tf_mixture_gaussian_map.py
|
tf_normal.py
|
tf_normal_normal_map.py
|
tf_normal_two.py
|
vae.py
|
vae_convolutional.py
|
vae_convolutional_prettytensor.py
|