%load_ext autoreload
%autoreload 2
import os
from pathlib import Path
from IPython.display import display
from scholar_scraper import *
# get you Scholar id from your page
# (e.g., https://scholar.google.com/citations?user=73-D2jgAAAAJ)
author_id = "73-D2jgAAAAJ"
# register on https://serpapi.com/ and get your SerpApi key
os.environ["SERP_API_KEY"] = "<YOUR_KEY>"
# cache your results
out_path = Path("results")
# depending on the number of your citations, scraping might:
# 1. require a paid serpapi plan
# 2. take a while (~ 7 sec/citation)...
results = scrape_author(author_id, out_path=out_path)
Articles: 0%| | 0/22 [00:00<?, ?it/s]
# load results as pandas dataframe
author_path = out_path / author_id
results = load_yaml(author_path / "results.yaml")
df = get_citation_df(results, keep_warnings=True)
df.sort_values("article").head(3)
name | affiliations | website | email_domain | warnings | affil_country | affil_name | citations | abbrv_name | article | article_id | citation | citation_id | author_id | affil_country_name | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
158 | Simon Welker | Universität Hamburg | Verified email at unihamburg.de | NaN | unihamburg.de | [] | DE | Universität Hamburg | 287.0 | S Welker | An optimal control perspective on diffusion-ba... | 73-D2jgAAAAJ:W7OEmFMy1HYC | DriftRec: Adapting diffusion models to blind J... | None | If3qsuwAAAAJ | Germany |
111 | Yoshua Bengio | Professor of computer science, University of M... | Verified email at umontreal.ca | https://yoshuabengio.org/ | umontreal.ca | [] | CA | Université de Montréal | 799012.0 | Y Bengio | An optimal control perspective on diffusion-ba... | 73-D2jgAAAAJ:W7OEmFMy1HYC | On diffusion models for amortized inference: B... | 15947547171699022423 | kukA0LcAAAAJ | Canada |
113 | Maxence Noble | Ph.D. Student, Ecole Polytechnique, France | Verified email at polytechnique.edu | https://maxencenoble.github.io/ | polytechnique.edu | [] | FR | Ecole Polytechnique | 81.0 | M Noble | An optimal control perspective on diffusion-ba... | 73-D2jgAAAAJ:W7OEmFMy1HYC | Stochastic Localization via Iterative Posterio... | 17344046561291018738 | 4eGHx3gAAAAJ | France |
# authors that most often cited your articles
cols = ["name", "cited_by_name", "affil_name", "website"]
author_df = drop_and_count_duplicates(
df, ["name", "author_id"], col_name="cited_by_name"
)
author_df.loc[:, cols].sort_values("cited_by_name", ascending=False).head(5)
name | cited_by_name | affil_name | website | |
---|---|---|---|---|
1858 | philipp grohs | 37.0 | Universität Vienna | http://mds.univie.ac.at/ |
2099 | Arnulf Jentzen | 31.0 | Westfälische Wilhelms-Universität Münster | http://www.ajentzen.de/ |
57 | Julius Berner | 25.0 | California Institute of Technology | https://jberner.info/ |
1877 | Gitta Kutyniok | 20.0 | Ludwig-Maximilians-Universität München | http://www.math.lmu.de/~kutyniok |
56 | Lorenz Richter | 20.0 | Zuse Institute Berlin | NaN |
# citing authors with most citations
cols = ["name", "citations", "affil_name", "website"]
author_df.loc[:, cols].sort_values("citations", ascending=False).head(10)
name | citations | affil_name | website | |
---|---|---|---|---|
63 | Yoshua Bengio | 798537.0 | Université de Montréal | https://yoshuabengio.org/ |
68 | Kevin Black | 263059.0 | University of Wisconsin - Madison | https://www.physics.wisc.edu/directory/black-k... |
62 | Aaron Courville | 248850.0 | Université de Montréal | http://aaroncourville.wordpress.com/ |
1751 | Philip S. Yu | 198809.0 | University of Illinois at Chicago | http://www.cs.uic.edu/PSYu |
223 | Sepp Hochreiter | 155041.0 | Johannes Kepler Universität Linz | https://www.jku.at/en/institute-for-machine-le... |
2076 | Dacheng Tao | 124900.0 | Nanyang Technological University | NaN |
320 | Joshua B. Tenenbaum | 110169.0 | Massachusetts Institute of Technology | http://web.mit.edu/cocosci/josh.html |
1549 | Seyedali Mirjalili | 109722.0 | Griffith University | https://seyedalimirjalili.com/ |
1300 | George Em Karniadakis | 106354.0 | Brown University | https://www.brown.edu/research/projects/crunch... |
578 | Michael Wooldridge | 85143.0 | University of Oxford | http://www.cs.ox.ac.uk/people/michael.wooldridge/ |
# map of citing authors
get_map(author_df, out_path=author_path, radius_scale=5, radius_log_base=2)
# affiliations that most often cited your articles
cols = ["affil_name", "cited_by_affil", "affil_country_name"]
affil_df = drop_and_count_duplicates(df, ["affil_name"], col_name="cited_by_affil")
affil_df.loc[:, cols].sort_values("cited_by_affil", ascending=False).head(5)
affil_name | cited_by_affil | affil_country_name | |
---|---|---|---|
289 | Universität Vienna | 66.0 | Austria |
19 | Swiss Federal Institute of Technology, Zurich | 56.0 | Switzerland |
3 | California Institute of Technology | 46.0 | United States |
1131 | Westfälische Wilhelms-Universität Münster | 40.0 | Germany |
311 | Microsoft | 38.0 | United States |
# affiliations citing specific articles
cols = ["citations", "affil_name", "affil_country_name", "cited_by_affil"]
for article in df.loc[:, "article"].unique():
print(article)
article_df = df.loc[df.loc[:, "article"] == article].dropna(subset=["affil_name"])
article_df = article_df.sort_values("citations", ascending=False)
article_df = drop_and_count_duplicates(
article_df, ["affil_name"], col_name="cited_by_affil"
)
display(article_df.loc[:, cols].head(5))
Pretraining Codomain Attention Neural Operators for Solving Multiphysics PDEs
citations | affil_name | affil_country_name | cited_by_affil | |
---|---|---|---|---|
6 | 27728.0 | California Institute of Technology | United States | 3 |
2 | 2705.0 | Frostburg State University | United States | 3 |
DPOT: Auto-Regressive Denoising Operator Transformer for Large-Scale PDE Pre-Training
citations | affil_name | affil_country_name | cited_by_affil | |
---|---|---|---|---|
16 | 46964.0 | University of Pennsylvania | United States | 5 |
11 | 36042.0 | Tsinghua University | China | 4 |
24 | 9640.0 | Swiss Federal Institute of Technology, Zurich | Switzerland | 5 |
Neural Operators with Localized Integral and Differential Kernels
citations | affil_name | affil_country_name | cited_by_affil | |
---|---|---|---|---|
33 | 46964.0 | University of Pennsylvania | United States | 5 |
37 | 17926.0 | Bayerische Julius-Maximilians-Universität Würz... | Germany | 3 |
28 | 9966.0 | NVIDIA | United States | 1 |
27 | 4890.0 | California Institute of Technology | United States | 3 |
An optimal control perspective on diffusion-based generative modeling
citations | affil_name | affil_country_name | cited_by_affil | |
---|---|---|---|---|
111 | 799012.0 | Université de Montréal | Canada | 10 |
68 | 263059.0 | University of Wisconsin - Madison | United States | 1 |
136 | 63989.0 | University of Oxford | United Kingdom | 5 |
142 | 30073.0 | Swiss Federal Institute of Technology, Zurich | Switzerland | 7 |
60 | 11077.0 | Meta | United States | 2 |
Improved sampling via learned diffusions
citations | affil_name | affil_country_name | cited_by_affil | |
---|---|---|---|---|
213 | 799012.0 | Université de Montréal | Canada | 12 |
223 | 155041.0 | Johannes Kepler Universität Linz | Austria | 2 |
248 | 63989.0 | University of Oxford | United Kingdom | 5 |
183 | 11077.0 | Meta | United States | 1 |
237 | 5399.0 | Stanford University | United States | 1 |
Mathematical Capabilities of ChatGPT
citations | affil_name | affil_country_name | cited_by_affil | |
---|---|---|---|---|
1751 | 198809.0 | University of Illinois at Chicago | United States | 2 |
320 | 110169.0 | Massachusetts Institute of Technology | United States | 8 |
1549 | 109722.0 | Griffith University | Australia | 1 |
1300 | 106354.0 | Brown University | United States | 4 |
578 | 85143.0 | University of Oxford | United Kingdom | 14 |
Large Language Models for Mathematicians
citations | affil_name | affil_country_name | cited_by_affil | |
---|---|---|---|---|
1834 | 8913.0 | University of Oxford | United Kingdom | 1 |
1827 | 7075.0 | Meta | United States | 1 |
1833 | 4377.0 | Ohio State University | United States | 4 |
1828 | 724.0 | University of Toronto | Canada | 3 |
1825 | 276.0 | Nanjing University | China | 2 |
Physics-Informed Neural Operators with Exact Differentiation on Arbitrary Geometries
citations | affil_name | affil_country_name | cited_by_affil | |
---|---|---|---|---|
1843 | 20743.0 | Stanford University | United States | 4 |
1841 | 19578.0 | University of California, Irvine | United States | 2 |
1838 | 11096.0 | University of Texas at Austin | United States | 3 |
1846 | 29.0 | NVIDIA | United States | 1 |
Learning ReLU networks to high uniform accuracy is intractable
citations | affil_name | affil_country_name | cited_by_affil | |
---|---|---|---|---|
1850 | 8366.0 | Texas A&M University | United States | 4 |
1853 | 7950.0 | Claremont Graduate University | United States | 1 |
1851 | 4994.0 | California Institute of Technology | United States | 1 |
1864 | 3993.0 | Universität Vienna | Austria | 4 |
1856 | 1739.0 | Peking University | China | 1 |
The Modern Mathematics of Deep Learning
citations | affil_name | affil_country_name | cited_by_affil | |
---|---|---|---|---|
2076 | 124900.0 | Nanyang Technological University | Singapore | 1 |
1988 | 45237.0 | University of Cambridge | United Kingdom | 8 |
2045 | 44881.0 | King Abdul Aziz University | Saudi Arabia | 2 |
2068 | 44479.0 | Columbia University | United States | 1 |
1896 | 43958.0 | Technische Universität Graz | Austria | 3 |
Robust SDE-Based Variational Formulations for Solving Linear PDEs via Deep Learning
citations | affil_name | affil_country_name | cited_by_affil | |
---|---|---|---|---|
2378 | 30713.0 | California Institute of Technology | United States | 7 |
2373 | 9966.0 | NVIDIA | United States | 2 |
2396 | 9422.0 | University of California, Merced | United States | 1 |
2388 | 3993.0 | Universität Vienna | Austria | 1 |
2420 | 1909.0 | University of Minnesota - Crookston | United States | 1 |
Group testing for SARS-CoV-2 allows for up to 10-fold efficiency increase across realistic scenarios and testing strategies
citations | affil_name | affil_country_name | cited_by_affil | |
---|---|---|---|---|
2461 | 46020.0 | Harvard University | United States | 4 |
2525 | 28210.0 | State University of New York at New Paltz | United States | 1 |
2512 | 14128.0 | University of Wisconsin - Madison | United States | 1 |
2493 | 13717.0 | Simon Fraser University | Canada | 5 |
2579 | 13716.0 | University of California, Los Angeles | United States | 17 |
Numerically Solving Parametric Families of High-Dimensional Kolmogorov Partial Differential Equations via Deep Learning
citations | affil_name | affil_country_name | cited_by_affil | |
---|---|---|---|---|
2724 | 80799.0 | University of Wisconsin - Madison | United States | 3 |
2692 | 63344.0 | Microsoft | United States | 9 |
2720 | 33347.0 | University of South Australia | Australia | 2 |
2655 | 30713.0 | California Institute of Technology | United States | 7 |
2643 | 28394.0 | University of Pennsylvania | United States | 1 |
Analysis of the Generalization Error: Empirical Risk Minimization over Deep Artificial Neural Networks Overcomes the Curse of Dimensionality in the Numerical Approximation of …
citations | affil_name | affil_country_name | cited_by_affil | |
---|---|---|---|---|
3027 | 106354.0 | Brown University | United States | 1 |
3051 | 33347.0 | University of South Australia | Australia | 3 |
3034 | 26183.0 | Princeton University | United States | 5 |
3041 | 24534.0 | Swiss Federal Institute of Technology, Zurich | Switzerland | 28 |
2935 | 24373.0 | Universität Graz | Austria | 2 |
Towards a regularity theory for ReLU networks–chain rule and global error estimates
citations | affil_name | affil_country_name | cited_by_affil | |
---|---|---|---|---|
3348 | 60996.0 | University of Florida | United States | 7 |
3378 | 59082.0 | Stanford University | United States | 1 |
3329 | 10503.0 | Westfälische Wilhelms-Universität Münster | Germany | 1 |
3350 | 8220.0 | Humboldt Universität Berlin | Germany | 2 |
3334 | 3993.0 | Universität Vienna | Austria | 4 |
How degenerate is the parametrization of neural networks with the ReLU activation function?
citations | affil_name | affil_country_name | cited_by_affil | |
---|---|---|---|---|
3435 | 45144.0 | University of Manitoba | Canada | 1 |
3446 | 19980.0 | Institute of Science and Technology | Austria | 1 |
3463 | 19169.0 | Faculty of Engineering, Lund University | Sweden | 2 |
3459 | 18182.0 | Ludwig-Maximilians-Universität München | Germany | 3 |
3458 | 15776.0 | Technische Universität München | Germany | 1 |