As a research of bird behavior I am tracking birds with accelerometers using the https://uva-bits.nl system. To study the birds energy usage I want to create a machine learning model. To train this model I need some artificial data.
The https://github.com/NLeSC/eEcology-Annotation-UI/raw/master/demo/tracker.json was derived from the uva-bits database of tracker 355 on 2010-06-28.
import json
import urllib.request
import pandas as pd
with urllib.request.urlopen('https://github.com/NLeSC/eEcology-Annotation-UI/raw/master/demo/tracker.json') as f:
data = json.load(f)
frame = 34
df = pd.DataFrame({
'x': data[frame]['x_acceleration'],
'y': data[frame]['y_acceleration'],
'z': data[frame]['z_acceleration']},
index=data[frame]['time_acceleration']
)
df.info()
df.plot()
<class 'pandas.core.frame.DataFrame'> Float64Index: 40 entries, 0.0 to 1.95 Data columns (total 3 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 x 40 non-null float64 1 y 40 non-null float64 2 z 40 non-null float64 dtypes: float64(3) memory usage: 1.2 KB
<AxesSubplot:>
import numpy as np
from sequgen.deterministic.sine import sine
from sequgen.deterministic.constant import constant
t_predict = np.linspace(0, 2, 40) # 2 seconds of 20Hz
x = sine(t_predict, wavelength=2/6, amplitude=0.25, phase_shift=0.25) + \
sine(t_predict, wavelength=2/6, amplitude=0.1, phase_shift=0.1) + \
constant(t_predict, -0.2)
z = sine(t_predict,
wavelength=2/6, # 6 flaps in 2 seconds
amplitude=1,
phase_shift=0.05) + constant(t_predict, 1) # add Earths gravity
y = sine(t_predict, wavelength=2/6, amplitude=0.25, phase_shift=0.05) + \
sine(t_predict, wavelength=2/6, amplitude=0.1, phase_shift=0.2)
pd.DataFrame({'x':x, 'y':y, 'z': z}, index=t_predict).plot()
<AxesSubplot:>