# Importing necessary libraries:
import numpy as np
import pandas as pd
# Knowing about the csv file:
ufo_data = pd.read_csv('ufo.csv', index_col = 'Date_time', parse_dates = True)
ufo_data.head()
city | state/province | country | UFO_shape | length_of_encounter_seconds | described_duration_of_encounter | description | date_documented | latitude | longitude | |
---|---|---|---|---|---|---|---|---|---|---|
Date_time | ||||||||||
1910-06-01 15:00:00 | wills point | tx | us | cigar | 120 | 2 minutes | Cigar shaped object moving from West to East | 04/16/2005 | 32.709167 | -96.008056 |
1920-06-11 21:00:00 | cicero | in | us | unknown | 60 | 1 minute | ((NUFORC Note: Probable hoax. Note date. PD... | 05/12/2009 | 40.123889 | -86.013333 |
1929-07-05 14:00:00 | buchanan (or burns) | or | us | disk | 60 | 1min | we were traveling east of burns,clmbing up ... | 08/16/2002 | 43.642500 | -118.627500 |
1931-06-01 13:00:00 | abilene | ks | us | disk | 1800 | 30 min. approx. | This is a what my mother related to me regardi... | 02/14/2006 | 38.917222 | -97.213611 |
1939-06-01 20:00:00 | waterloo | al | us | fireball | 300 | 5 minutes | 4 high school students see bright, ground-l... | 02/21/2014 | 34.918056 | -88.064167 |
from datetime import date
now = pd.to_datetime(date.today()) # '2019-11-02 00:00:00'
date = str(now).split()[0] # After split: ['2019-11-02', '00:00:00']
print('Today\'s Date->', date)
Today's Date-> 2021-02-09
date_diff = (now - ufo_data.index).days # difference of corresponding time in days
result = date_diff.to_frame(index = False, name='Diff in Days')
print(result)
Diff in Days 0 40430 1 36767 2 33456 3 32760 4 29838 .. ... 342 6153 343 5969 344 5937 345 5906 346 6208 [347 rows x 1 columns]
Data Sources: ufo_sighting_data.csv - [80,332 records]
Exercises data sources: ufo.csv - [347 random records from ufo_sighting_data.csv]
Note there are no missing data in the columns (ufo.csv).
Source: